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CRITICAL INFRASTRUCTURE SYSTEMS

Systems which are essential for the maintenance of vital societal functions
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Objective

Simulation-based hydraulic resilience
evaluation to investigate systems
capability to cope with shocks.

» Topology

» Demand variation

» Pressure performance regimes
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Objective

» Capturing the relationship between key factors

>

that influence performance loss and recovery
Identify groups of scenarios that the system
exhibits similar response behaviors and that
can be easily labeled

Support decisions to improve WDS resilience
before and during a disruption
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SELECTING CASE
STUDIES & DATA
PROCESSING

-Man-made or natural hazards

-Fire flow




Objective

Simulation-based hydraulic resilience
evaluation to investigate systems
capability to cope with shocks.

» Topology

» Demand variation

» Pressure performance regimes
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Demand variation and operation range
Simulation-based hydraulic performance

Identify critical
locations

Disruption simulation

Performance
Evaluation

evaluation to investigate
capability to cope with shocks.
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Results
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Quantitative Assessment of System Response During
Disruptions: An Application to Water Distribution Systems



Objective

» Capturing the relationship between key factors that
influence performance loss and recovery

» |dentify groups of scenarios that the system exhibits
similar response behaviors and that can be easily
labeled

» Support decisions to improve WDS resilience before and
during a disruption



Recovery Modelling for Water Distribution Systems

e Two benchmark water networks are considered: Net3 and C-Town

 An n-1 analysis is conducted, where one node at a time is disrupted by
simulating a water leakage

e Systems dynamics are simulated and the average satisfied demand calculated
as MOP

* Beta family of recovery functions with enhanced versatility is developed to
identify critical components of a WDS

B (b+C)b+C t b t b
MOP(t) — Tl:)0 —a pbcc (;) (1 - 1_/)
with0 <t <v

v' a characterizes the max performance loss
v' b the time to strain

v' v the time to recovery




Results

 Some degree of correlation is

observed between parameters a
and b

 Two characteristic recovery
processes are identified

Figure 1: Goodness of fit (R?)

Figure 2: Topology of Net3, nodes are coloured according to a, b, and A
Figure 3: Results of the k-means algorithm

Figure 4: Topology of Net3, nodes are coloured according to cluster
Figure 5: Identified characteristic recovery processes
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Concluding Remarks

* Robustness vs. Resilience:
* What is necessary to move from being robust to become
resilient? What do we need for a concrete road map towards
resilience?

*  MOPs, Resilience functions and Metrics:
 How do you choose metrics given that number of metrics are
available now as well as models, algorithms, or data. What is the
determinant factor when we select or exclude variables?

* Extreme events, emerging response:
* Resilience against what, when, whom?
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