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Abstract

In data-communication networks, network reliability is of great concern to both network operators and customers. On the one

hand, the customers care about receiving reliable services and, on the other hand, for the network operators it is vital to determine

the most vulnerable parts of their network.

In this paper, we first study the problem of establishing a connection over at most k (partially) link-disjoint paths and for which

the total availability is no less than δ (0 < δ ≤ 1). We analyze the complexity of this problem in generic networks, Shared-Risk

Link Group (SRLG) networks and multi-layer networks. We subsequently propose a polynomial-time heuristic algorithm and an

exact Integer Non-Linear Program (INLP) for availability-based path selection. The proposed algorithms are evaluated in terms of

acceptance ratio and running time. Subsequently, in the three aforementioned types of networks, we study the problem of finding

a (set of) network cut(s) for which the failure probability of its links is largest.
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1. INTRODUCTION

Due to the importance of data-communication networks, even short service disruptions may result in significant economic

loss. Hence, survivability mechanisms to protect connections are called for. For instance, by allocating a pair of link-disjoint

paths (instead of only one unprotected path), data are transported by the primary path, and upon link failure, can be switched

to the backup path.

Ideally, a survivability mechanism should also take into account the reliability of links. For instance, if both primary

and backup paths contain links that have a high probability to become unavailable, then proper protection cannot be provided.

Connection availability, a value between 0 and 1, is therefore important and refers to the probability that a connection (including

its survivability mechanism) is in the operating state during the requested life-time of the connection.

However, a survivability mechanism that does not allow for more than 2 link-disjoint paths for each connection may still fail

to satisfy the customer’s availability requirement and k > 2 link-disjoint paths may be needed. Obviously, the bigger k is, the

greater the availability of the connection could be, but also the greater the resource consumption (e.g., bandwidth) and hence

price. This paper first deals with the Availability-Based Path Selection (ABPS) problem, which is to establish a connection

over at most k > 0 (fully or partially) link-disjoint paths, for which the availability is at least δ (0 < δ ≤ 1).

Apart from considering how to provide a reliable connection to customers, it is also important for network operators to

determine the most vulnerable part of the network, i.e., a subset of links with highest failure probability whose removal
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will disconnect the network. The network operator could then replace/strengthen those links in order to increase the network

reliability. Hence, this paper also tackles this so-called Network Vulnerability Assessment (NVA) problem, which is to find a

set of network cuts for which the failure probability of the links in a cut belonging to that set is highest.

Our key contributions are as follows:

• We consider the Availability-Based Path Selection (ABPS) problem in generic networks, Shared-Risk Link Group (SRLG)

networks and multi-layer networks.

• We prove that, in general, the ABPS problem cannot be approximated in polynomial time.

• We propose a polynomial-time heuristic algorithm and an exact Integer Non-Linear Program (INLP) to solve the ABPS

problem.

• We compare, via simulations, the proposed algorithms with two existing algorithms in terms of performance and running

time.

• We consider the Network Vulnerability Assessment (NVA) problem in generic networks, SRLG networks and multi-layer

networks.

The remainder of this paper is organized as follows. Related work is presented in Section 2. Section 3 explains the calculation

of availability for different path types: unprotected path, k fully link-disjoint and k partially link-disjoint. In Section 4, we

formally define the Availability-Based Path Selection (ABPS) problem in generic networks and analyze its complexity. In

Sections 5 and 6, we consider the ABPS problem in SRLG networks and multi-layer networks, respectively. Section 7 presents

our heuristic routing algorithm and an exact INLP. Section 8 provides our simulation results. In Section 9, we study the

Network Vulnerability Assessment problem in the three aforementioned types of networks. We conclude in Section 10.

2. RELATED WORK

Availability-aware routing under both static and dynamic traffic demands has been extensively investigated [7, 8, 12, 13, 16,

20]. When the traffic matrix is given in advance (static traffic), Zhang et al. [20] present a mathematical model to compute

availability for different protection types (unprotected, dedicated protection and shared protection) for a given static traffic

matrix. Furthermore, an Integer Linear Program (ILP) and a heuristic algorithm are proposed to find availability-aware paths.

Tornatore et al. [16] address the availability design problem: to accommodate a given traffic matrix by using shared/dedicated

protection paths. Song et al. [13] propose an availability-guaranteed routing algorithm, where different protection types are

allowed. They define a new cost function for computing a backup path when the unprotected path fails to satisfy the availability

requirement. She et al. [12] prove that for dedicated protection, finding two link-disjoint paths with maximal reliability

(availability) is NP-hard. They also propose two heuristics for that problem. Luo et al. [8] analyze the problem of protection

with different reliability, which is to find one unprotected path or dedicated protection path such that the cost of the entire path

is minimized and the reliability requirement is satisfied. They subsequently propose an exact ILP as well as two approximation

algorithms. However, the reliability (availability) calculation in [8] is different from the aforementioned papers, and assumes a

single-link failure model. Assuming each link in the network has a failure probability (=1-availability), Lee et al. [7] minimize

the total failure probability of unprotected, partially link-disjoint and fully link-disjoint paths by establishing INLPs. They

further transform the proposed INLPs to ILPs by using linear approximations.

Different from the aforementioned articles, we target a more general problem, which is to find at most k (fully or partially)

link-disjoint paths for which the availability requirement is satisfied.
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From the perspective of network reliability calculation, assuming each link in the network is associated with a failure

probability value (=1-availability), Provan and Ball [11] prove the problem of computing the probability that the network stays

connected is #P-complete1. Karger [5] proposes a Fully Polynomial Randomized Approximation Scheme (FPRAS) to solve

this problem. There is also work focusing on how to mathematically model the availability of various network topologies or

different protection segments/paths. Zou et al. [21] investigate how to mathematically calculate the availability of different

types of network topologies, e.g., tree topology, double star, crown or triple star. Tornatore et al. [15] mathematically model

the availability of segment protection (SP). In segment protection, a working path (WP) can be partitioned into several working

segments (WSs) and each WS is protected by a backup segment (BS). Moreover, they consider two SP cases, namely (1) overlap

SP, where different WSs can share the same link, and (2) no-overlap SP, where WSs are fully link-disjoint. By expressing the

dual-link failure via a continuous time Markov chain, Mello et al. [9] approximately estimate the (un)availability of the shared

protection path.

Regarding SRLG networks, Hu [4] proves that the problem of finding 2 SRLG-disjoint paths is NP-hard. To solve it, Hu

[4] presents an exact ILP and Xu et al. [18] propose a trap-avoidance heuristic algorithm. However, the SRLG-disjoint routing

problem is not the same as the one studied in this paper, due to Eq. (5) in Section 5. Hence, the algorithms in [4, 18] cannot

be used to effectively solve our problem.

In generic networks, the (s, t) Min-Cut problem refers to partitioning the network into two disjoint subsets such that nodes

s and t are in different subsets and the total weight of the cut links is minimized. This problem can be solved by finding a

maximum flow from s to t [2]. There is also considerable work on the all-pairs Min-Cut problem, e.g. see [6].

3. CONNECTION AVAILABILITY

The availability of a system is the fraction of time the system is operational during the entire service time. Like [7, 12, 20],

we first assume that, in generic networks, the links’ availabilities are uncorrelated/independent. If a connection is carried by

a single (unprotected) path, its availability is equal to the path availability; if it is protected by k ≥ 2 disjoint paths, the

availability will be determined by these k protection paths. The availability Aj of a network component j can be calculated

as [21]:

Aj =
MTTF

MTTF +MTTR
(1)

where MTTF represents Mean Time To Failure and MTTR denotes Mean Time To Repair. We assume that the link availability

is equal to the product of availabilities of all its components (e.g., amplifiers). We can regard the link availability as the

probability that the link operates.

3.1. Link Failure Scenarios

For simplicity, suppose there are two (fully) link-disjoint paths p1 and p2, and the availability of link l is denoted as

Al = 1− fl, where 0 < Al ≤ 1 and fl is the failure probability of link l. Then their total availability A2
FD can be computed

based on the following scenarios:

• Single-link failure: Here it is assumed that all the links in the network have very low failure probability. In this context,

a path p’s availability (denoted by Ap) is equal to its lowest traversed link availability (highest failure probability), i.e.,

Ap = minl∈pAl. Using two disjoint paths (which is a conventional survivability mechanism) will therefore lead to a total

1Valiant [17] shows that problems in this class are at least as hard as NP-complete problems.
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connection availability of 1. However, this approach only works when all the links are highly reliable. In Appendix A,

we will address the ABPS problem under the single-link failure scenario.

• Multiple link failures: This is a more general scenario where at one certain point in time, several links in the network

may fail simultaneously. Hence, for a path p, its availability Ap should take into account all its links’ availabilities, i.e.,

Ap =
∏
l∈pAl. Consequently, A2

FD = 1 − (1 − Ap1)(1 − Ap2), which indicates the probability that at least one of the

two disjoint paths is available. In this paper, we assume multiple link failures may occur.

3.2. End-to-End Path Availability

A network having node and link availabilities can be transformed into a directed network with only link availabilities

[1]. Therefore, we assume nodes have availability 1 in this paper. If a path p contains the links l1, l2, l3,. . . , lm, and their

corresponding (independent) availabilities are denoted by Al1 , Al2 , Al3 ,. . . , Alm , then the availability of this path (represented

by Ap) is equal to Ap = Al1 ·Al2 ·Al3 · · · · ·Alm . If we take the − log of the link availabilities, finding a path with the highest

availability turns into a shortest path problem.

When, for a single connection, there are k ≥ 2 paths p1, p2,. . . , pk with availabilities represented by Ap1 , Ap2 ,. . . , Apk , the

connection availability indicates the probability that at least one path is operational. We consider two cases, namely: (1) fully

link-disjoint paths: these k paths have no links in common, and (2) partially link-disjoint paths: at least two of these k paths

traverse a common link. In case (1), the availability (represented by AkFD) can be calculated as follows:

AkFD =1−
k∏
i=1

(1−Api) (2)

If we use Eq. (2) to calculate the availability for the partially link-disjoint case, the probability that the overlapping links

operate (or the availability of the overlapping links) will be counted more than once. To amend this, we introduce two new

operators ◦ and
∐

. Assume there are k partially link-disjoint paths p1, p2,. . . , pk, and assume that for these k paths ψ denotes

the set of their overlapping links. Then
∐

and ◦ are used as follows:

k∐
i=1

Api = Ap1 ◦Ap2 ◦ · · · ◦Apk =

 k∏
i=1

∏
m∈{pi}\ψ

Am

 ·∏
l∈ψ

Al (3)

The availability (represented by AkPD) of k partially link-disjoint paths can now be represented as:

AkPD = 1−
k∐
i=1

(1−Api) (4)

4. ABPS PROBLEM AND COMPLEXITY

4.1. Problem Definition

The Availability-Based Path Selection (ABPS) problem is defined as follows:

Definition 1. Given is a network represented by G(N ,L) where N represents the set of N nodes, L denotes the set of L

links and link l has availability Al. For a request represented by r(s, t, δ), where s and t denote the source and destination,

respectively, and δ (0 < δ ≤ 1) represents the availability requirement, establish a connection over at most k (partially)

link-disjoint paths for which the availability is at least δ.
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A variant, called the Availability-Based Backup Path Selection (ABBPS) problem, is defined as:

Definition 2. Given an existing primary path p from s to t and a requested availability δ, find at most k − 1 paths that are

fully or partially link-disjoint with p, such that the availability of these k paths is no less than δ.

4.2. Complexity Analysis

In this section, we study the complexity of the ABPS problem in generic networks. For the case k = 1, by taking the − log

of the link availabilities, the ABPS problem turns into a shortest path problem, which is polynomially solvable.

Theorem 1. The ABPS problem is NP-hard for k ≥ 2.

Proof: The case for partially link-disjoint paths can be reduced to the case of fully link-disjoint paths by a transformation

such as in Fig. 1. More specifically, if we assume that all links in Fig. 1, except for (s, s′) and (t′, t), have availability less than

δ, then no link, except for (s, s′) and (t′, t), can be an unprotected link in the solution of the ABPS problem for the partially

link-disjoint case from s to t. Hence, solving the fully link-disjoint ABPS problem from s′ to t′ is equivalent to solving the

partially link-disjoint ABPS problem from s to t. We therefore proceed to prove that the fully link-disjoint variant for k = 2

is NP-hard. The proof for k > 2 follows analogously from the proof for k = 2.

Fig. 1: Reduction of ABPS problem from partially link-disjoint to fully link-disjoint.

We first introduce the NP-hard 3SAT problem [3] and then reduce the ABPS problem to it. The 3SAT problem is defined

as follows. Given is a boolean formula C1 ∧C2 ∧ ...∧Cm, where Ci denotes the i-th clause. Each clause contains 3 variables

combined using an OR operation. The question is whether there is a truth assignment to the variables that simultaneously

satisfies all m clauses. Given a 3SAT instance, the graph construction follows similarly to [12]. Assume there are n variables

xi+1xi

v1
iu1

i

1
iv

u2
i v2

i uqii v i

1
iu u2

i v2
i

qi

uqii v iqi

Fig. 2: A lobe for each xi.

in the 3SAT instance. First, we create a lobe for each variable xi, which is shown in Fig. 2, where qi represents the number

of occurrences of variable xi in all the clauses. The availability value for each link is also shown in Fig. 2, where 0 < b < 1.

For each clause Ci two nodes yi and zi are created and a link connects zi and yi+1 with availability of 1, where 0 < i < m.

We assume that s = x1 and t = xn+1. Moreover, we draw a link (s, y1) with availability a and a link (zm, t) with availability

1, where 0 < b < a
2 < 1. Fig. 3 depicts this process.

To relate the clause and variables in the constructed graph, we add the following links: (i) links (yj , u
i
k) and (vik, zj)

are added if the k-th occurrence of variable xi exists in clause Cj ; or (ii) links (yj , u
i
k) and (vik, zj) are added if the k-th

occurrence of variable xi exists with a negation in the clause Cj . For instance, a network corresponding to the 3SAT instance
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Fig. 3: Lobes for all clauses.

(x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x4) is shown in Fig. 4. Based on the constructed graph, which

2 3 4

1 1 2 2 4 4

a

33

Fig. 4: Constructed graph that corresponds to (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x4).

corresponds to a given 3SAT instance, we are asked to solve the ABPS problem for k = 2 and δ = a + bq − abq , where q

is the sum of occurrences for each variable in all the clauses, i.e., q =
∑n
i=1 qi. Because one shortest path can at most have

availability a, which is less than δ, we have to find 2 link-disjoint paths. Next, we will prove that the fully link-disjoint variant

of the ABPS problem is NP-hard.

3SAT to ABPS: If there exists a truth assignment that satisfies all the clauses, then each clause j has (at least) one variable

with true or (negated) false assignment to make this clause true. Therefore, an upper subpath yj − uik − vik − zj − yj+1 or a

lower subpath yj −uik− vik− zj − yj+1 will be selected. By concatenating these m subpaths with s− y1 and zm− t we obtain

one path (denoted by p1) with availability a. Since each variable only has one truth assignment, p1 cannot traverse both the

upper subpath and lower subpath in the same lobe. Subsequently, we can get another fully link-disjoint path p2: For each lobe

i (corresponding to variable xi), p2 traverses the upper (lower) subpath with availability of bqi if p1 goes through the link of

lower (upper) subpath. The availability of p2 is bq = b
∑n

i=1 qi , therefore p1 and p2 together have availability of a+ bq − abq ,

which satisfies the requirement δ.

ABPS to 3SAT: If there are two fully link-disjoint paths from s to t with availability no less than a + bq − abq , then

one path must have availability a. To understand this, assume that none of the two paths has availability a; without loss of

generality, we assume one path has availability of acbe, where c can be either 0 or 1 indicating whether link (s, y1) has

been traversed, and e > 0 is the number of links that have availability b. Since there exists only one link with availability a,

the other link-disjoint path has availability ac
′
bf , where c′ is either 0 or 1 meaning whether link (s, y1) has been traversed

and c′ + c ≤ 1, and f > 0 is the number of links which have availability b. Hence, the availability of these two paths is

acbe + ac
′
bf − ac+c′be+f < b + b < a < δ, when b < a

2 . Based on this analysis, there must exist one path p1 from s to t

with availability a, which goes through (s, y1) and (zm, t) and the other links with availability of 1. To satisfy the availability

requirement, there must also exist another fully link-disjoint path p2 from s to t with availability of no less than bq . For

each lobe, p2 should traverse either the upper subpath or the lower subpath, otherwise p1 and p2 cannot be fully link-disjoint.

Therefore, p2 will traverse the (entire) lower subpath if p1 goes through link (uik, v
i
k) in the upper subpath, and traverse
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the (entire) upper subpath if p1 goes through link (uik, v
i
k) in the lower subpath for each lobe xi. That is to say, p1 cannot

simultaneously traverse one link in the upper subpath and another link in the lower subpath for any lobe. Consequently, p1

either goes via an upper subpath yj−uik−vik−zj−yj+1 to set variable xi to true or via a lower subpath yj−uik−vik−zj−yj+1

to set variable xi to false for clause j, where i = 1, 2, ..., n and j = 1, 2, ...,m. Hence, all the m clauses can be simultaneously

satisfied.

Theorem 2. The ABBPS problem is NP-hard for k ≥ 2.

Proof: For k ≥ 3, the ABBPS problem is equivalent to the ABPS problem for k− 1 fully or partially link-disjoint paths,

and hence NP-hard. In Appendix B, we prove that the ABBPS problem is also NP-hard for k = 2.

We proceed to study the approximability of the ABPS problem.

Theorem 3. The ABPS problem for k ≥ 2 cannot be approximated to arbitrary degree in polynomial time, unless P=NP.

Proof: We can check in polynomial time whether a single path can accommodate the requested availability. Hence, the

theorem is equivalent to: for a request r(s, t, δ) and any constant number d > 1, there is no polynomial-time algorithm that

can find at least 2, but at most k, fully or partially link-disjoint paths from s to t with availability at least δ
d . We prove the

theorem for the fully link-disjoint variant2 of the ABPS problem for k = 2.

We will use a proof by contradiction and assume a polynomial-time approximation algorithm A exists for any d > 1. In

the constructed graph based on the given 3SAT instance in Fig. 4 (also using the same notation and conditions), assume

δ = a+ bq − abq , so algorithm A can find two fully link-disjoint paths with availability at least a+b
q−abq
d . Next, we prove that

when 0 < b < a
2d , except for an exact solution, there exists no solution with availability no less than a+bq−abq

d . If the exact

solution is not achieved by algorithm A, according to our previous analysis, then one path must have availability of acbe and

the other path has availability of ac
′
bf . Therefore, the availability of these two paths is equal to acbe + ac

′
bf − ac+c′be+f .

For a given d, we have acbe + ac
′
bf − ac+c′be+f < b + b = 2b < a

d , when 0 < b < a
2d and 0 < a < 1. Therefore, under

0 < b < a
2d , except for an exact solution, any two fully link-disjoint paths cannot have availability less than a+bq−abq

d . To

fulfill the assumption, algorithm A has to find two link-disjoint paths with availability a+ bq − abq . In this context, the fully

link-disjoint variant of the ABPS problem for k = 2 can be solved exactly in polynomial time, which is a contradiction.

5. SHARED-RISK LINK GROUPS

In this section, we assume two types of failures/availabilities, namely Shared-Risk Link Group (SRLG) failures and single

link failures/availabilities. A Shared-Risk Link Group (SRLG) [6] reflects that a certain set/group of links in a network will

fail simultaneously. For instance, in optical networks, several fibers may reside in the same duct and a cut of the duct would

cut all fibers in it. One duct in this context corresponds to one distinct SRLG. If each link is a single member of an SRLG,

then no SRLGs exist. Hence the ABPS problem in SRLG networks includes as a special case the ABPS problem in generic

networks as discussed in the previous section. Each link can belong to one or more SRLGs, and the links in the same SRLG

will simultaneously fail when the corresponding SRLG fails. The probability of this happening (or not) is the SRLG failure

(availability) probability. We assume there are g SRLGs in the network G(N ,L), and that the failure probability of the i-th

SRLG (represented by srlgi) is denoted by πi, for 1 ≤ i ≤ g. For a particular link l ∈ L, we denote by SRl the set of all

SRLGs to which l belongs. Different from [7], where all SRLG events are assumed to be mutually exclusive, we assume that

2The partially link-disjoint variant follows analogously.
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multiple SRLG events may occur simultaneously. The availability of a single path should incorporate the SRLG availabilities

as well as the link availabilities. Consequently, the availability of path p can be calculated as:∏
i:srlgi∩p6=∅

(1− πi)
∏
l∈p

Al (5)

where
∏

i:srlgi∩p6=∅
(1− πi) in Eq. (5) is the contribution of all the traversed SRLGs, while

∏
l∈pAl is the availability of path p

under the condition that all its traversed SRLGs do not fail.

For example, in Fig. 5, suppose there are three SRLGs in the network with failure probabilities 0.1, 0.4 and 0.2, respectively,

and all the links have availability 0.9. We calculate the availability of path s− a− b− t, which traverses 2 SRLGs (srlg1 and

srlg3): The probability that both srlg1 and srlg3 do not fail is (1−0.1)× (1−0.2). Under this condition, all the links on path

s−a−b−t have availability 0.9 and therefore path s−a−b−t has a total availability of (1−0.1)×(1−0.2)×(0.9)3 = 0.52488.

Fig. 5: Availability calculation in an SRLG network.

Next, we will prove that the single path variant of the ABPS problem in SRLG networks is NP-hard. To that end, we first

introduce the Minimum Color Single-Path (MCSiP) problem, which is NP-hard [19]. Given a network G(N ,L), and given

the set of colors C = {c1, c2, ..., cg} where g is the total number of colors in G, and given the color {cl} of every link l ∈ L,

the MCSiP problem is to find a path from source node s to destination node t that uses the fewest number of colors.

Theorem 4. The ABPS problem is NP-hard in SRLG networks even for k = 1.

Proof: Assume we have a network where all the links have availability 1 when their SRLGs do not fail, and that there

are g SRLGs with the same failure probability 1
g . Hence, a path’s availability is only determined by the number of SRLGs

it traverses. If we denote one SRLG by one particular color, then the single-path ABPS problem in SRLG networks can be

reduced to the MCSiP problem.

6. MULTI-LAYER NETWORKS

In multi-layer (e.g., IP-over-WDM) networks or overlay networks, the abstract links in the logical layer are mapped to

different physical links in the physical layer. In this context, two or more abstract links that contain the same physical links

may have correlated availabilities or failure probabilities. Moreover, usually only the links in the logical layer are known in

multi-layer networks.

Let us first consider the example of multi-layer networks shown in Fig. 6. In Fig. 6(a), the availability is labeled on each

link in the physical layer, and the links in the logical layer are mapped to the links in the physical layer with the greatest

availability. Suppose we want to find a most reliable unprotected path from s to t in Fig. 6(a). Since we are only aware of

the links in the logical layer, we find that the most reliable path’s availability is 0.72 · 0.4 = 0.288. However, the optimal

solution is path s-b-t with availability 0.45 in the physical layer. The reason is that (s, a) and (a, t) in the logical layer share

the same link (s, b), which leads to a lower availability value. Fig. 6(b) shows an example similar to Fig. 6(a), except that
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each link in the physical layer has one additional wavelength number. In the absence of wavelength conversion, it is required

that the lightpath occupies the same wavelength on all links it traverses, which is referred to as the wavelength-continuity

constraint in WDM-enabled networks. Now, suppose we want to find the most reliable lightpath from s to t, that obeys the

wavelength-continuity constraint. Clearly, if we are only aware of the links in the logical layer, the result is path s-a-t with

availability 0.8 · 0.45 = 0.36. However, since this path is mapped to the path s-a-b-t in the physical layer, it violates the

wavelength-continuity constraint. The optimal solution is path s-a-t in the physical layer via wavelength λ1. Its availability is

0.8 · 0.3 = 0.24.

(a) Increasing joint availability

1

1 2

1

2

(b) Decreasing joint availability

Fig. 6: A multi-layer network example.

For any two links l and m in the logical layer of a multi-layer network, we denote their availabilities by Al and Am,

respectively. Let us use � as the actual joint availability value of these two links. Then we derive that Al�Am can be greater

than Al · Am (Fig. 6(a)), or less than Al · Am (Fig. 6(b)), or equal to Al · Am. For the latter case, we say that l and m are

uncorrelated, otherwise we say that l and m are correlated: if Al �Am > Al ·Am, l and m are “increasing correlated,” else l

and m are “decreasing correlated.” Analogously, the operator � can be used for more than two links. Next, we will prove the

NP-hardness of the ABPS problem for k = 1 in multi-layer networks.

Theorem 5. The ABPS problem is NP-hard in multi-layer networks even for k = 1.

Proof: When all the links are uncorrelated in multi-layer networks, the ABPS with k = 1 problem is solvable poly-

nomial time. SRLG networks can be regarded as a special case of increasing correlation in multi-layer networks, since

the links that share at least one common SRLG group (denote this link set by L′) will have an availability greater than

9



∏
l∈L′

( ∏
i;srlgi∩l 6=∅

(1− πi) ·Al

)
. Since the single-path ABPS problem in SRLG networks is NP-hard, as we proved in Theorem 4,

the single-path ABPS problem in multi-layer networks is also NP-hard.

7. HEURISTIC AND EXACT ALGORITHMS

7.1. Heuristic Algorithm

Algorithm 1 MMA(G, s, t, δ, k, I)

1: Find one shortest path p1, return it if the availability requirement is satisfied, otherwise go to Step 2.

2: ps← 1, H ← p1, P ← H , Pb ← ∅ and Q← ∅

3: While ps ≤ k

4: P ← H

5: For each path ap ∈ P

6: Pb ← P and counter ← 0

7: While counter ≤ I do

8: Randomly select one link (u, v) ∈ ap, remove all the links in ap and find one shortest path ψu→v from u to v.

Recover all the links in ap in G afterwards.

9: If it succeeds then

10: Replace (u, v) with ψu→v in ap, denote it as ap′

11: Pb. Remove(ap), Pb. Add(ap′), ap← ap′

12: Find another path p2 link-disjoint with Pb.

13: Return {p2} ∪ Pb if δ is met.

14: For each link (u, v) ∈ ap′

15: If its availability is at least δ then

16: Q. Add((u, v))

17: while (Q 6= ∅) do

18: (u, v)← EXTRACT-MIN(Q)

19: Find a path p3 which shares (u, v) with ap′.

20: If (p3 /∈ Pb) and {p3} ∪ Pb satisfy δ then

21: Return {p3} ∪ Pb
22: else H ←Max Availability{H, {p3} ∪ Pb}

23: counter ← counter + 1.

24: ps← ps+ 1

Our heuristic, called the Min-Mins Algorithm (MMA) to solve the ABPS problem in generic networks, SRLG networks and

multi-layer networks, is presented in Algorithm 1. Since we want to use as least (and no more than k) link-disjoint paths to

satisfy the requested availability, we gradually increase the number of paths.

The pseudo code to solve the ABPS problem in multi-layer networks is similar to the one for generic networks, except for

the path availability calculation. Also, the pseudo code to solve the ABPS problem in SRLG networks is similar to the one in

10



generic networks, and we will specify the differences later. In what follows, we explain each step of the heuristic algorithm.

We assign link l ∈ L the weight of − log(Al) (− log(
∏
i∈SRl(1− πi) · Al) for SRLG networks) in MMA. If a shortest path

(represented by p1) in Step 1 fails to satisfy the availability requirement, we keep it as the initial path flow. In Step 2, we use

ps to record the number of already found link-disjoint paths. Initially ps is set to 1. H stores the already found ps link-disjoint

paths, and it is initially assigned p1. While ps is no greater than k, Steps 3-24 continue to find a solution. In Step 4, we assign

to P the already found paths H . Based on P , from Step 5 to Step 23, we each time select one path ap from path set P . We

also use a variable, denoted by counter in Algorithm 1, to record the number of iterations. Initially, counter is set to 0. As

long as the number of iterations is less than an input value I , Steps 7-23 proceed to find a solution based on ap and path set

Pb. The (sub)path from u to v found by the algorithm is denoted by ψu→v . In Step 8, we randomly select (and eliminate)

one link (u, v) from ap, and we apply a shortest path algorithm from u to v to obtain a path ψu→v . To prevent ψu→v to

have overlapping links with ap, we also need to remove all the links in ap before running the shortest path algorithm. By

concatenating subpath ψu→v and the links of path ap except for (u, v), we obtain a new path ap′. Further, by substituting ap

with ap′ in Pb, we have a new path set Pb. After that, the algorithm tries to find Pb’s fully link-disjoint path in Step 12. When

solving the ABPS problem in SRLG networks, since each SRLG only contributes once to the path availability calculation, the

link l’s weight is set to − log(
∏
i∈{SRl\SRc}(1− πi) ·Al) before running a shortest path algorithm in Step 12 (also the same

for Step 19), where SRc are the common traversed SRLGs between link l and path set Pb. If it fails to find p2 or {p2} ∪ Pb
cannot satisfy the availability requirement, the algorithm tries to find a path which is partially link-disjoint with ap′ (in Steps

13-22). The general idea is that we first use a queue Q to store the links in ap′ whose availability is no less than δ in Steps

14-16. After that, as long as Q is not empty in Steps 17-22, each time the link with the greatest availability in Q is extracted as

the unprotected link (represented by (u, v)), and then we remove all the links traversed by ap′ except for (u, v). Subsequently,

we find one shortest path ψs→u from s to u (if it exists), and find another shortest path ψv→t from v to t (if it exists). The

link (u, v) should be first removed before finding a shortest path from s to u to avoid that ψs→u traverses (u, v). Similarly, in

order that ψv→t does not share any common links with ψs→u and traverses link (u, v), we need to first remove all the links

in ψs→u and link (u, v), and then run the shortest path algorithm to obtain ψv→t. We also need to recover all the eliminated

links in the graph after running shortest path algorithms. By concatenating ψs→u, (u, v) and ψv→t, we can get a new path p3,

which is partially link-disjoint with ap′; p3 is a simple path since all these three subpaths (ψs→u, (u, v) and ψv→t) do not

share any links in common. If a and b denote different sets of k > 1 link-disjoint paths, the function Max Availability(a, b)

in Step 22 returns the one with greater availability.

The time complexity of MMA can be computed as follows. Step 1 has a time complexity of O(N logN +L). From Step 3

to Step 24, there are at most O(I)+O(2I)+ · · ·+O(kI) = O(k2I) iterations before the algorithm terminates. Steps 14-16 have

a time complexity of O(N) since a path contains at most N −1 links and therefore Steps 17-22 consume O(N(N logN +L))

time. Finally, the overall time complexity of MMA is O(k2IN(N logN + L)).

7.2. Exact INLP Formulation

In this subsection, we present an exact Integer Non-Linear Program (INLP) to solve the ABPS problem in generic, SRLG

and multi-layer networks. We first solve the ABPS problem in generic networks and start by explaining the required notation

and variables.

INLP notation:

r(s, t, δ): Traffic request, with source s, destination t and requested availability δ.

11



Ai,j : Availability of link (i, j).

g : The total number of SRLGs.

πmi,j : The failure probability of the m-th SRLG if link (i, j) belongs to it, otherwise it is 0.

INLP variable:

P r,ui,j : Boolean variable equal to 1 if link (i, j) is traversed by path u (1 ≤ u ≤ k) for request r; 0 otherwise.

Flow conservation constraints:

∑
(i,j)∈L

P r,ui,j −
∑

(j,i)∈L

P r,uj,i =


1,

−1,

0,

i = s

i = t

otherwise

(6)

∀i ∈ N 1 ≤ u ≤ k

Availability constraint:

k∑
u=1

∏
(i,j)∈L

(
1− P r,ui,j + P ri,jAi,j

)
−

∑
1≤u<v≤k

∏
(i,j)∈L

min
(
1− P r,ui,j + P r,ui,j Ai,j , 1− P

r,v
i,j + P r,vi,j Ai,j

)

+ · · ·+ (−1)k−1
 ∏

(i,j)∈L

min
1≤u≤k

(1− P r,ui,j + P r,ui,j Ai,j)

 ≥ δ (7)

When both the flow conservation constraint (Eq. (6)) and the availability constraint (Eq. (7)) are satisfied, an optimal solution

is found by the INLP, otherwise there is no solution. There is no objective (needed) in the proposed INLP, but one could include

the objective of minimizing the number of paths (or links) used. Eq. (6) accounts for the flow conservation for each of the at

most k paths. For a particular uth path (1 ≤ u ≤ k), it ensures that (i) for the source node s of request r, the outgoing traffic

for each request is 1; (ii) for the destination node t of request r, the incoming traffic is 1; and (iii) for an intermediate node

which is neither source nor destination, its incoming traffic is equal to the outgoing traffic. Eq. (7) ensures that either the found

single unprotected path or the (partially) link-disjoint paths should have availability no less than δ, according to the availability

calculation of k link-disjoint paths in Eqs. (2) and (4). Since the overlapped link’s availability in the partially link-disjoint

calculation according to Eq. (4) can only be counted once, we take the minimum value of the variables P r,ui,j for each link and

then take the product over all the links for (partially) link-disjoint paths. We also note that Eq. (7) can simultaneously calculate

the availability of the fully link-disjoint variant, partially link-disjoint variant and the unprotected variant. For instance when

k = 2, Eq. (7) becomes:

∏
(i,j)∈L

(1− P r,1i,j + P r,1i,j Ai,j) +
∏

(i,j)∈L

(1− P r,2i,j + P r,2i,j Ai,j)−∏
(i,j)∈L

min(1− P r,1i,j + P r,1i,j Ai,j , 1− P
r,2
i,j + P r,2i,j Ai,j) ≥ δ (8)

When P r,1i,j = P r,2i,j for all (i, j) ∈ L, Eq. (8) becomes∏
(i,j)∈L

(1− P r,1i,j + P r,1i,j Ai,j) ≥ δ
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or ∏
(i,j)∈L

(1− P r,2i,j + P r,2i,j Ai,j) ≥ δ

which is the availability constraint for a single unprotected path.

To solve the ABPS problem in SRLG networks, we need to slightly modify Eq. (7) (and keep flow conversation constraints

Eq. (6) the same) by using
∏

1≤m≤g

k
min
u=1

(
1− min

(i,j)∈L
(1− P r,ui,j + P r,ui,j π

m
i,j)

)
to multiply the left side of Eq. (7), which is the

non-failure probability of the SRLGs which at most k link-disjoint paths have traversed.

In multi-layer networks, the availability of a subset of links may not be equal to the product of their availabilities. Therefore,

we need one more function f(
−→
L ), which can return the joint availability of a subset of links

−→
L in multi-layer networks. The

parameter of this function is a 0/1 link vector which contains L elements, where 1 denotes the link is present to be calculated

and 0 means it is not. Consequently, to solve the ABPS problem in multi-layer networks exactly, we could replace the operator∏
with f() in Eq. (7), and keep all the other notation and constraints the same as for the generic networks case.

The number of variables in the INLP is kL for the ABPS problem in generic networks, is kL+mL for the ABPS problem in

SRLG networks and is kL for the ABPS problem in multi-layer networks. In Eq. (6), there are kL flow conservation constraints.

Eq. (7) has (
(
k
1

)
+
(
k
2

)
+ . . .+

(
k
k

)
)L = 2kL availability constraints. Since

∏
1≤m≤g

k
min
u=1

(
1− min

(i,j)∈L
(1− P r,ui,j + P r,ui,j π

m
i,j)

)
has

gkL constraints, the number of availability constraints in SRLG networks is gkL · 2kL = gkL22k. In multi-layer networks,

the function f(
−→
L ) has L parameters, leading to 2L availability constraints.

8. SIMULATION RESULTS

8.1. Simulation Setup

Fig. 7: USA carrier backbone network.

We conduct simulations on two networks, one is USANet, displayed in Fig. 7, which is a realistic carrier backbone network

consisting of 24 nodes and 43 links, and the other is GÉANT, shown in Fig. 8, which is the pan-European communications

infrastructure serving Europe’s research and education community consisting of 40 nodes and 63 links. The simulation deals

with the ABPS problem in generic, SRLG and multi-layer networks. For generic networks, we assume the availability of fiber

links is distributed among the set {0.99, 0.999, 0.9999}, with a proportion of 1:1:2. Based on the same link availabilities,

in SRLG networks we assume that there are in total 5 SRLG events with the failure probabilities 0.001, 0.002, 0.003, 0.004

and 0.005, respectively. Each link has randomly been assigned to at most 3 SRLG events. Based on the same (individual)

link availabilities as for generic networks, in multi-layer networks, 1
3 of the links are increasing correlated, and it follows that

Al�Am�···�An = max(Al, Am, . . . , An); 1
3 of the links are decreasing correlated, and it follows that Al�Am�···�An =

(Al · Am · · · · · An)2; and the other 1
3 of the links are uncorrelated. For all these three networks, since we want to compare
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Fig. 8: GÉANT pan-European research network.

the ability of finding paths for the algorithms, the capacity is set to infinity. We vary the number of traffic requests from

100 to 1000. The source and destination of each request are randomly selected, and each request has infinite holding time.

The requested availability includes two cases: (i) general availability requirement case: the availability is randomly distributed

among the set {0.98, 0.99, 0.995, 0.997, 0.999}; (ii) high availability requirement case: the availability is randomly distributed

among the set {0.9995, 0.9996, 0.9997, 0.9998, 0.9999}, by which we want to challenge the algorithm to find feasible paths

under more difficult conditions. Considering the practical time complexity and the existing proposed algorithms that only focus

on finding two link-disjoint paths, we choose k = 2. We set I in MMA to be dlogNe in these two networks (5 in USANet and

6 in GÉANT, respectively). Under the same weight allocation with our algorithm, we compare the proposed heuristic MMA

and exact INLP with two heuristics: Two-step Reliability Algorithm (TRA) and Maximal-Reliability Algorithm (MRA), which

are proposed in [12]. TRA first calculates a shortest path, and then calculates (if it exists) another shortest path after removing

the links traversed by the first path. MRA applies Suurballe’s algorithm [14] to calculate a pair of two link-disjoint paths

that have minimum total weight. Both algorithms first apply a shortest path algorithm to check whether an unprotected path

solution exits. The simulation is run on a desktop PC with 3.00 GHz CPU and 4 GB memory. We use IBM ILOG CPLEX

12.6 to implement the proposed INLP and C# to implement the heuristic algorithms.

8.2. Results

We first evaluate the performance of the algorithms in terms of Acceptance Ratio (AR) in generic networks. The acceptance

ratio is defined as the percentage of the number of accepted requests over all the requests. We first analyze the general

availability requirement case: In USANet, all the algorithms achieved an AR of 1. We therefore omit the figure showing the

general availability performance for USANet. However, this is not the case for the GÉANT topology. From Fig. 9(a), we can

see that the performance of all algorithms is under 0.95. Since GÉANT is not as well connected as USANet, some nodes in

GÉANT only have degree one (e.g., nodes 3, 8, etc.); if a degree-one node becomes the source or the destination of a certain

request, the request can only be served by partial protection (or a single unprotected path). In this context, a feasible path may

not exist in GÉANT, which will result in blocking. In terms of performance, the INLP achieves the highest AR. On the other

hand, MMA shows a higher AR than the other two heuristics TRA and MRA (Fig. 9(a)).

For the high availability requirement scenario (shown in Figs. 9(b) and 9(c)), as expected, the AR of all these algorithms
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Fig. 9: AR of four algorithms in generic networks: (a) general availability requirement. (USANet has been omitted since all

4 algorithms always achieved an AR of 1.); (b)-(c) high availability requirement, * max 50 mins per request.

is lower than in the general availability requirement case. In this scenario, the INLP requires more time to find a solution,

especially when a solution does not exist. In order to let the INLP return the result in a reasonable time, we set the time limit

for it to serve one request to 50 minutes. Due to this reason, we can see that INLP has the lowest AR in USANet and often

second highest AR in GÉANT. Meanwhile, MMA still has the highest AR in most of the cases.
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Fig. 10: AR of the heuristic algorithms in SRLG networks for general availability requirement.

The time limit for the INLP is even more constraining in the case of SRLG networks, leading to a very poor performance

for SRLG networks. We have therefore omitted the results for the INLP in SRLG networks. Since a solution rarely was found

in the high availability requirement case, we only provide the simulation results for the heuristic algorithms in the general

availability requirement case. Moreover, to have a fair comparison, we compare our algorithms with MRA and a modified

TRA [7], which is a heuristic routing algorithm proposed for probabilistic SRLG networks. Its main idea is that after finding

the first shortest path, the remaining link weights should be adjusted (we slightly change its link weight adjustment to be the

same as in Step 12 of MMA for a fairer comparison), and then to find another link-disjoint shortest path. Fig. 10 shows that

the proposed heuristic algorithm MMA still achieves higher AR than these two algorithms.

Similar to SRLG networks, the exact INLP in multi-layer networks is very time consuming. We therefore omit the results

for the INLP in multi-layer networks. Fig. 11 provides the results for all three heuristics in the two networks for both general

and high availability requirement scenarios. It can be seen that MMA achieves the highest AR compared to the other two

heuristics.
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Fig. 11: AR of heuristics in multi-layer networks: (a)-(b) general availability requirement; (c)-(d) high availability requirement.

TABLE 1: Running times per request for four algorithms (ms).

Networks INLP MMA MRA TRA

USA Generic (General δ) 10190 0.187 0.128 0.127

GÉANT Generic (General δ) 29896 0.558 0.143 0.142

USA Generic (High δ) 79764 0.224 0.147 0.146

GÉANT Generic (High δ) 135181 0.679 0.162 0.160

USA SRLG (General δ) > 3.6 · 107 0.461 0.136 0.161

GÉANT SRLG (General δ) > 3.6 · 107 0.663 0.167 0.196

USA Multi-layer (General δ) > 3.6 · 107 0.857 0.135 0.141

GÉANT Multi-layer (General δ) > 3.6 · 107 1.378 0.175 0.181

USA Multi-layer (High δ) > 3.6 · 107 1.136 0.157 0.162

GÉANT Multi-layer (High δ) > 3.6 · 107 1.679 0.262 0.223

Finally, in Table 1, we present the (average) running times per request for these four algorithms in generic, SRLG and

multi-layer networks. It shows that the INLP is significantly more time consuming than the three polynomial-time heuristics.

On the other hand, MMA has only a slightly higher running time than MRA and TRA, but it pays off by having a higher AR

as shown in Figs. 9-11. Another observation is that, for the same algorithm in the same network, the running time is higher

for the high availability requirement case than in the general availability requirement case.

9. NETWORK VULNERABILITY ASSESSMENT

9.1. Problem Definition and Complexity Analysis

Finding the most vulnerable part of a network as well as the previously considered problem of availability-based path selection

are both important elements for network robustness. In this section, we study the (s,t) Network Vulnerability Assessment (NVA)

problem. That is, to find one or a set of (equal-weight) (s,t) network cuts whose failure probability of the links in the cut is

highest. An (s,t) network cut refers to a set of links, whose removal will result in a partitioning of the network such that s

and t are in disjoint parts of the network. Formally, the NVA problem can be defined as follows:

Definition 3. The (s,t) Network Vulnerability Assessment (NVA) problem: Given is a network G(N ,L), and each link l ∈ L

is associated with a failure probability fl = 1−Al. Given a source s and a target t, find an (s,t) cut C for which
∏
l∈C fl is

maximized. In case there are multiple cuts of highest weight all of them should be returned.
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When the node pair (s,t) is not specified, we denote this problem as the NVA problem, which can be solved by solving the

(s,t) NVA problem at most N − 1 times. Therefore, these two problems share the same hardness.

We use − log(fl) for the weight of link l in the network. In generic networks, the NVA problem can be solved by finding

all the min-cuts in O(L2N +N2L) time [10]. On the other hand, we will prove that the NVA problem in SRLG networks is

NP-hard. Recall that in SRLG networks, introduced in Section 5, two types of failures/availabilities should be incorporated,

namely Shared-Risk Link Group (SRLG) failures and single link failures/availabilities. Therefore the probability that all the

links belonging to path p fail simultaneously (denoted by F (p)) can be calculated as:1− ∏
i:srlgi∩p6=∅

(1− πi)

+
∏
l∈p

fl −

1− ∏
i:srlgi∩p6=∅

(1− πi)

 ·
∏
l∈p

fl (9)

Please note that Eq. (9) is different from the failure probability of a path in SRLG networks: 1−Eq. (5).

Before we prove the NP-hardness of the NVA problem, let us first study the Maximum Color Path Selection (MCPS)

problem. Contrary to the MCSiP problem, the MCPS problem is to find a single path that uses the largest number of colors.

Theorem 6. The Maximum Color Path Selection (MCPS) problem is NP-hard.

Proof: We distinguish two cases, namely, (1) all the links have exclusive colors, i.e., there does not exist any color that

is shared/overlapped by two or more links, and (2) two or more links may contain the same color(s).

Case (1): The MCPS problem is equivalent to the NP-hard Longest Path problem [3], which is to find a path from s to t

such that its weight is maximized.

Fig. 12: Reduction of the MCPS problem to the Disjoint Connecting Paths problem.

Case (2): We first introduce the Disjoint Connecting Paths problem [3]. Given a network G(N ,L), and a collection of

disjoint node pairs (s1, t1), (s2, t2), ..., (sz , tz), does G contain z mutually link-disjoint paths, one connecting si and ti for

each i, 1 ≤ i ≤ z. This problem is proved NP-hard when z ≥ 3, and we reduce the MCPS problem to it. In Fig. 12, assume

that there are in total g colors and that links (a, b) and (c, d) share 0 < x < g common colors, but they together contain g

distinct colors. Except for these two links, the other links are assigned 0 < y < g colors, but there do not exist two or more

links containing g distinct colors. In this context, finding a path from s to t with the largest number of colors is equivalent to

finding three mutually link-disjoint paths between the three node pairs (s, a), (b, c) and (d, t).

Theorem 7. The Network Vulnerability Assessment (NVA) problem in SRLG Networks is NP-hard.

Proof: It is equivalent to prove that the (s,t) NVA problem is NP-hard.

In Fig. 13, assume all link availabilities are 1 and all links have non-zero SRLG failure probabilities, except for links

(xi, xi+1) and (zi, zi+1) which have 0 SRLGs, where 1 ≤ i ≤ n − 1. Assume there are g SRLG events in total, and each

SRLG event occurs with a probability of 1
g . In this context, for a path p without links (xi, xi+1) and (zi, zi+1), according to
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Fig. 13: Example network.
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Fig. 14: Reduction of the (s,t) NVA problem in SRLG networks to the MCPS problem.

Eq. (9), F (p) can be calculated as:

1− (1− 1

g
)m (10)

where m is the total number of distinct SRLGs traversed by p. Therefore, to maximize Eq. (10) one needs to maximize m,

i.e., to find a path with the greatest probability that all its traversed links fail simultaneously. This is equivalent to finding a

path having the largest number of distinct SRLGs. We want to solve the (x1,z1) NVA problem. Based on Fig. 13, we first

derive Fig. 14 with the same nodes except that we add one more node s. We regard s = y0, and t = yn. The link weights in

Fig. 14 are set as follows: (yi−1, xi) and (yi−1, zi) have 0 SRLGs, while (xi, zi) and (zi, yi) have the same SRLGs as in Fig.

13, where 1 ≤ i ≤ n. In Fig. 14, we are asked to solve the MCPS problem from the source s to the destination t.

Since we want to find a cut that separates x1 and z1, any cuts in the form of (xi, yi) and (yi, zi), where 1 ≤ i ≤ n are

not part of the optimal solution. Moreover, considering the link in the form of (xj , xj+1) or (yj , yj+1) has 0 SRLGs and

single link availability 1, which means its failure probability is 0, it cannot lead to the optimal solution as well. Based on the

above observations, any feasible cut C should contain one link: either (xi, yi) or (yi, zi), for all 1 ≤ i ≤ n. We prove in the

following that the (s,t) NVA problem in Fig. 13 can be reduced to the MCPS problem in Fig. 14 in polynomial time, where,

for simplicity, we assume only one optimal cut exists in the (s,t) NVA problem.

(s,t) NVA to MCPS: An optimal solution of the (s,t) NVA problem should be composed of either (xi, yi) or (yi, zi), where

1 ≤ i ≤ n. Let CNVA reflect the set of links in the optimal solution. Because CNVA has the largest number of distinct SRLGs,

CNVA together with (s, x1) or (s, z1) forms a path from s to t with the maximum number of SRLGs.

MCPS to (s,t) NVA: Let RMCPS denote the set of links in the optimal solution of the MCPS problem. Because RMCPS has

the largest number of SRLGs, let CNVA = RMCPS\{(yi, xi+1), (yi, zi+1)}. Considering that the links (yi, xi+1) and (yi, zi+1)

have 0 SRLGs, CNVA also has the largest number of SRLGs. Therefore solving the MCPS problem yields a solution to the

(s,t) NVA problem.

18



Theorem 8. The NVA problem in multi-layer networks is NP-hard.

Proof: For any two links l and m in a multi-layer network, we have Al�Am = (1−fl)�(1−fm) = 1−fm−fl+fl�fm.

Similar to Theorem 5, we can also prove that it is NP-hard to find one path from the source to the destination in multi-layer

networks such that the probability that all its links fail is maximized. Subsequently, we can prove that the NVA problem in

multi-layer networks is NP-hard, which follows analogously with Theorem 7. We therefore omit the details.

10. CONCLUSION

The availability of a connection represents how reliably a connection can carry data from a source to a destination. In this

paper, we have first studied the Availability-Based Path Selection (ABPS) problem, which is to establish a connection over at

most k (fully or partially) link-disjoint paths, such that the total availability is no less than δ (0 < δ ≤ 1). We have proved that,

in general, the ABPS problem is NP-hard and cannot be approximated in polynomial time for k ≥ 2, unless P=NP. We have

further proved that in SRLG networks and multi-layer networks, even the single-path (k = 1) variant of the ABPS problem is

NP-hard.

We have proposed a polynomial-time heuristic algorithm and an exact INLP to solve the ABPS problem in generic networks,

SRLG networks and multi-layer networks. Via simulations, we have found that our heuristic algorithm outperforms two existing

algorithms in terms of the acceptance ratio with only slightly higher running time. On the other hand, the running time of the

exact INLP is significantly larger (by several orders of magnitude) than the running time of the heuristic algorithms.

Finally, we have proved that the Network Vulnerability Assessment (NVA) problem, which is to find a cut of the network

for which the failure probability of all its links is highest, is solvable in polynomial time in generic networks, but is NP-hard

to solve in SRLG networks and multi-layer networks.
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APPENDIX A

SINGLE-LINK FAILURE

In this section, we assume that only 1 link in the network can fail at a time. Apart from that, we also assume that two

successive failures occur with a time difference longer than the traversal time of any path in the network.

For this scenario, we present a polynomial-time algorithm to solve the ABPS problem. More specifically, in Algorithm 2,

when k = 1, in Steps 1-2, we eliminate the links with availability less than δ, such that we obtain a new graph G′ where each

link has availability at least δ. Subsequently, by running Dijkstra’s shortest path algorithm on G′ from s to t, we can solve the

ABPS problem for k = 1.

When k ≥ 2, if the optimal solution consists of k fully link-disjoint paths, then 2 fully link-disjoint paths also exist and

have availability 1 under the single-link failure scenario, which is optimal. Hence, by applying Suurballe’s algorithm [14] in

Step 3, the solution can be found, if it exists.

When the optimal solution consists of k partially link-disjoint paths, then 2 partially link-disjoint paths are also enough.

The reason is that the availability of partially link-disjoint paths is decided by one unprotected link (say l). Hence, it suffices

to find k = 2 partially link-disjoint paths. In Steps 4-5, for each link (u, v) whose availability is no less than δ, we create

another (parallel) link between u and v with the same availability. After that, we call Suurballe’s algorithm [14] from s to t.

Since in the optimal solution the unprotected link has availability at least δ, by creating the parallel links whose availability

is at least δ, the paths p1 and p2 returned by Suurballe’s algorithm [14] are two “fully” link-disjoint paths. After that, if p1
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and p2 traverse the parallel links, we then merge these two links into one link. This kind of link reflects the unprotected link

in the optimal solution. On the other hand, the links whose availability is less than δ are protected in the returned solution

because of the correctness of Suurballe’s algorithm. Therefore, an optimal solution can be found by Algorithm 2.

Algorithm 2 ABPSSingleLinkFailure(G, s, t, δ, k)

1: Eliminate the links with availability less than δ on G, thereby obtaining a new graph G′. Assign each link l in G′ the

weight of − log(Al).

2: Run Dijkstra’s algorithm on G′ from s to t. If the solution is found then return the result; Else if k > 1, continue; Otherwise

output there is no solution.

3: Run Suurballe’s algorithm [14] on G from s to t. Return the result if the solution is found, otherwise continue.

4: Create another (parallel) link between u and v with the same availability A(u,v) and assign the weight of − log(A(u,v)),

for each (u, v) ∈ L if A(u,v) ≥ δ. The graph is denoted as G′′.

5: Run Suurballe’s algorithm [14] on G′′ from s to t. Return the result if the solution is found, otherwise output there is no

solution.

APPENDIX B

HARDNESS OF THE ABBPS PROBLEM FOR k = 2

For some variants, like the fully link-disjoint case, the ABBPS problem is polynomially solvable by looking for an unprotected

path with maximum availability in the network where all the links from the primary path are excluded. However, it is NP-hard

in its general setting.

Fig. 15: Reduction of the ABBPS problem with partially link-disjoint paths to the Disjoint Connecting Paths problem.

Theorem 9. The partially link-disjoint ABBPS problem for k = 2 is NP-hard.

Proof: We provide a proof for k = 2. As shown in Fig. 15, assume we are given a path (denoted by GP) s-a-b-c-d-t

with the availability labeled on each link and all the other links have an availability of 1. We now want to find a partially

link-disjoint path with GP such that their combined availability is no less than 1. Since the requested availability is 1, only link

(a, b) and link (c, d) can be unprotected in an optimal solution. Suppose that when link (a, b) is eliminated, there do not exist

paths from node s to nodes b, c, d and t, and when link (c, d) is eliminated, there are no paths from node b to nodes d and t.

In this context, to solve the partially link-disjoint ABBPS problem for k = 2, both (a, b) and (c, d) should be unprotected in

the optimal solution. This is equivalent to finding three pairs of link-disjoint paths between node pairs (s, a), (b, c) and (d, t)

(i.e., the Disjoint Connecting Paths problem). Hence, solving the partially link-disjoint ABBPS problem for k = 2 yields a

solution to the NP-hard Disjoint Connecting Paths problem.
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