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Abstract

We consider the partitioning ofm-dimensional lattice graphs using
Fiedler’s approach [1], that requires the determination of the eigen-
vector belonging to the second smallest eigenvalue of the Laplacian.
We examine the general m-dimensional lattice and, in particular, the
special cases: the 1-dimensional path graph PN and the 2-dimensional
lattice graph. We determine the size of the clusters and the number
of links, which are cut by this partitioning as a function of Fiedler’s
threshold α.

1 Introduction

There are many methods and approaches for graph partitioning. Here,
we shall focus only on Fiedler’s approach to clustering, which theoretically
determines the relation between the size of the obtained clusters and the
number of links that are cut by this partitioning as a function of a threshold
α and of graph properties such as the number of nodes and links. When ap-
plying Fiedler’s beautiful results [1] to the Laplacian matrix Q of a graph,
the eigenvector belonging to the second smallest eigenvalue, known as the
algebraic connectivity, needs to be computed. We apply Fiedler’s approach
to the m-dimensional lattice graph and determine the cluster size as a func-
tion of the threshold α. Following the notation in [2], a graph G consists
of a set N of N = |N | nodes and a set L of L = |L| links. We denote

by xi =
[
(xi)1 (xi)2 ... (xi)N

]T
the eigenvector of the N × N sym-

metric Laplacian Q belonging to the eigenvalue µi. Since eigenvectors of
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a symmetric matrix are orthogonal, we normalize the eigenvectors of Q by
requiring that

∥xi∥22 = xTi xi = 1 for each i = 1, ..., N (1)

The last condition ensures that the eigenvector is unique. The eigenval-
ues of the Laplacian are nonnegative with at least one eigenvalue equal to
zero [1] and they can be ordered as 0 = µN ≤ µN−1 ≤ ... ≤ µ1. If the
graph is connected, then µN−1 > 0 and the components of the correspon-
dent eigenvector xN−1 determine the Fiedler partitioning with respect to

the threshold α: the set of nodes M =
{
j ∈ N : (xN−1)j ≥ α

}
defines the

first (connected) cluster and the set N\M determines the second (con-
nected) cluster. Our interest concerns the size (or the number of nodes) of
the obtained clusters and the number of links that will be cut by Fiedler’s
partitioning. The end points of those links are nodes in two separate clus-
ters. We denote by c(G) the number of links in G that will be cut by this
partitioning. Furthermore, we define the “ratio of cut links”

r(G) =
c(G)

L
(2)

where L = |L| is the total number of links in the graph.
Clearly, 0 ≤ r(G) ≤ 1.

2 The path and lattice graphs

In this Section, we examine the effect of Fiedler’s clustering on the lattice
graph. We will start with the 1-dimensional path graph PN on N nodes and
containing (N − 1) links or hops, which we subsequently will generalize to
m dimensions. Finally, we will apply the results to a 2-dimensional lattice.

2.1 A path PN of (N − 1) hops

In [3], the Laplacian eigenvalues (as well as the eigenvectors) of the path
PN are derived as µN−m (PN ) = 2

(
1− cos

(
πm
N

))
for m = 0, 1, 2, ..., N − 1.

The second smallest eigenvalue of the Laplacian is

µN−1 (PN ) = 2
(
1− cos

( π

N

))
= 4 sin2

( π

2N

)
2



and the corresponding Laplacian eigenvector components are [3]

(xN−1)j =

√
2

N
cos

π

2N
(2j − 1)

where 1 ≤ j ≤ N . The corresponding Fiedler partitioning rule for the
components of the eigenvector xN−1 with respect to the threshold α is

(xN−1)j ≥ α

Clustering into two separate, non-empty sets of nodes will exist if and only

if |α| ≤
√

2
N . Because cos π

2N (2j − 1) decreases with j, the nodes labeled

by j will belong to the first cluster provided

j ≤

[
1

2
+

N

π
arccos

(
α

√
N

2

)]
(3)

Relation (3) shows for α = 0 that one half of the nodes will belong to both
clusters. In all cases only one link will be cut, thus c(PN ) = 1.

2.2 The general m dimensional lattice

We consider the m-dimensional lattice Cm = La(z1+1)×(z2+1)×...×(zm+1) with
lengths z1, z2, . . . , zm in each dimension, respectively, and where at each lat-
tice point with integer coordinates a node is placed that is connected to its
nearest neighbors whose coordinates only differ by 1 in only 1 components.
The total number of nodes in Cm is N = (z1+1)× (z2+1)× . . .× (zm+1).
The lattice graph is a Cartesian product [7] of m path graphs, denoted by
Cm = P(z1+1)�P(z2+1)� . . .�P(zm+1). According to [3, 4, 5, 6], the eigen-
values of Cm can be written as a sum of one combination of eigenvalues of
path graphs and the corresponding eigenvector is the Kronecker product of
the corresponding eigenvectors of the same path graphs,

µi1i2...iN (Cm) =
∑m

j=1 µij

(
P(zj+1)

)
xi1i2...im (Cm) = xi1

(
P(zj+1)

)
⊗ xi2

(
P(z2+1)

)
⊗ . . .⊗ xim

(
P(zm+1)

) (4)

where ij ∈ {1, 2, . . . , zj + 1} for each j ∈ {1, 2, . . . ,m}. Without loss of
generality we can assume that z1 ≤ z2 ≤ . . . ≤ zm. In Section 2.1, we
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obtained the Laplacian eigenvalues of the path on N nodes and for the
second smallest eigenvalues µN−1 of P(z1+1), P(z2+1), . . . , P(zm+1), we have
that

µz1

(
P(zj+1)

)
≥ µz2

(
P(zj+1)

)
≥ . . . ≥ µzm

(
P(zj+1)

)
Substituted into (4), the second smallest Laplacian eigenvalue of Cm is ob-
tained for ij = zj +1, j ∈ {1, 2, . . . ,m− 1} and im = zm. Since µN = 0 or,

equivalently, µz1+1

(
P(zj+1)

)
= µz2+1

(
P(zj+1)

)
= . . . = µzm−1+1

(
P(zj+1)

)
= 0, we find that

µ(z1+1)(z2+1)...zm (Cm) = µzm

(
P(zj+1)

)
= 2

(
1− cos

(
π

zm + 1

))
From (4), the corresponding eigenvector is

x(z1+1)(z2+1)...zm (Cm) = xz1+1

(
P(z1+1)

)
⊗xz2+1

(
P(z2+1)

)
⊗. . .⊗xzm

(
P(zm+1)

)
To shorten the notation, we define s = (z1 + 1) (z2 + 1) . . . (zm−1 + 1) and

t =

[
1

2
+

zm + 1

π
arccos

(
α

√
s (zm + 1)

2

)]

All components of xzi+1

(
P(zi+1)

)
= 1√

zi+1
for i ∈ {1, 2, . . . ,m− 1} are

equal, so their final result is Kronecker product of a vector with all equal
components and y = xzm

(
P(zm+1)

)
. Hence, we have

x(z1+1)(z2+1)...zm (Cm) = K

 y y ... y︸ ︷︷ ︸
s times


T

(5)

After proper normalization using (1), we obtain K =
√

2
s(zm+1) (see Ap-

pendix A.1). According to (5), xzm
(
P(zm+1)

)
occurs (z1 + 1) . . . (zm−1 + 1)

times in x(z1+1)(z2+1)...zm (Cm). This last result illustrates that every compo-
nent of x(z1+1)(z2+1)...zm (Cm) repeats periodically after (zm + 1) next com-
ponents, such that the Fiedler partitioning condition reads√

2

s (zm + 1)
cos

(2j − 1)π

2 (zm + 1)
≥ α (6)
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only for j = 1, 2, ..., (zm + 1). Thus, clustering of the m-dimensional lattice

Cm into two non-empty subsets exists if and only if |α| ≤
√

2
s(zm+1) in which

case j ≤ t. Because every component periodically repeats after (zm + 1)
components, the final condition for the node labeled by j to belong to the
first cluster is j mod (zm + 1) ∈ {1, 2, . . . , t}. Hence, those nodes are

j ∈ {1, 2, . . . , t,
zm + 2, . . . , zm + 1 + t,
...
(s− 1) (zm + 1) + 1, . . . , (s− 1) (zm + 1) + t}

It could be written in a shorter form

j ∈ {w + v|∀w = 0, . . . (s− 1) (zm + 1) and ∀v = 1, . . . t} (7)

This means that the number of nodes in the first cluster equals s · t and
that in the second clusters equals s · (zm+1− t). The (m− 1)-dimensional
hyperplane divides the m-dimensional lattice Cm into two clusters. Let us
consider the links that will be cut by this partitioning. Those links are

t ↔ (t+ 1) ,
(zm + 1) + t ↔ (zm + 1) + t+ 1,
...
(s− 1) (zm + 1) + t ↔ (s− 1) (zm + 1) + t+ 1

Shortly those links are

w + t ↔ w + (t+ 1) , for w = 0, zm + 1, . . . , (s− 1) (zm + 1)

Hence, the number of cut links is

c(Cm) = s =

m−1∏
i=1

(zi + 1) (8)

Finally, the total number of links in the general lattice Cm is specified in

Lemma 1 The number of links in the Cm = La(z1+1)×(z2+1)×...×(zm+1) is

L =

[
m∏
i=1

(zi + 1)

]
m∑
i=1

zi
zi + 1
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Proof: We will prove the lemma by induction. Let the number of links
in the k-dimensional lattice La(z1+1)×(z2+1)×...×(zk+1) be l(z1, z2, . . . , zk).

1) For k = 1, we have a path graph Pz1+1 and its number of links is
L = l(z1) = z1 = (z1 + 1) z1

z1+1 .
2) Let us assume that the lemma holds for k-dimensional lattices. We

consider the (k + 1)-dimensional lattice La(z1+1)×(z2+1)×...×(zk+1+1), that is
constructed from k different k-dimensional lattices (La(zi1+1)×(zi2+1)×...×(zik+1),

where i1, i2, . . . , ik ∈ {1, 2, . . . , (k + 1)}) in the following way. We position
a total of

(
zik+1

+ 1
)
such k-dimensional lattices La(zi1+1)×(zi2+1)×...×(zik+1)

in next to each other in the direction of ik+1 dimension. In this way, every
link is counted k-times in all of the dimensions. Intuitively, this construc-
tion is easier to imagine in two or three dimensions. The 2-dimensional

(a) z1 direction (b) z2 direction (c) La(z1+1)×(z2+1)

Figure 1: Construction of 2-dimensional lattice

lattice La(z1+1)×(z2+1)(Figure 1(c)) is constructed by positioning (z1 + 1)
consecutive path graphs Pz2+1 vertically(on the Figure 1(a)) and (z2 + 1)
consecutive path graphs Pz1+1 horizontally(on the Figure 1(b)). The 3-
dimensional lattice La(z1+1)×(z2+1)×(z3+1)(Figure 2) is constructed by (z3+
1) consecutive 2-dimensional La(z1+1)×(z2+1) planes that are positioned next
to each other in the direction of the third dimension(on the Figure 2(a)),
(z2+1) consecutive 2-dimensional La(z1+1)×(z3+1) planes that are positioned
next to each other in the direction of the second dimension(on the Figure
2(b))and, finally, (z1+1) consecutive 2-dimensional La (z2+1)×(z3+1) planes
that are positioned next to each other in the direction of the first dimen-
sion(on the Figure 2(c)). In the process of constructing of La(z1+1)×(z2+1)×(z3+1)

(on Figure 2(d)) all links in are counted twice. Returning to the k-dimensional
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(a) z1 direction (b) z2 direction

(c) z3 direction (d) La(z1+1)×(z2+1)×(z3+1)

Figure 2: Construction of 3-dimensional lattice

case, we deduce that

l(z1, z2, . . . , zk+1) =
1

k

k+1∑
i=1

(zi + 1)l(zj1 , zj2 , . . . , zjk)

where jw ̸= i for each i = 1, 2, . . . , (k + 1) and w = 1, 2, . . . , k. Introducing
the induction hypothesis for k-dimension lattices, we obtain
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l(z1, z2, . . . , zk+1) =
1

k

k+1∑
i=1

(zi + 1)

k+1∏
j=1,j ̸=i

(zj + 1)

k+1∑
j=1,j ̸=i

zj
zj + 1

=
1

k

k+1∏
j=1

(zj + 1)
k+1∑
i=1

k+1∑
j=1,j ̸=i

zj
zj + 1

=
1

k

k+1∏
j=1

(zj + 1)k
k+1∑
i=1

zj
zj + 1

which illustrates that the induction hypothesis is true for (k + 1), and con-
sequently it is true for each dimension m ≥ 1. �

Using (4), the ordering z1 ≤ z2 ≤ . . . ≤ zm and Lemma 1, the “ratio
of cut links” is

r(Cm) =
1

(zm + 1)
∑m

i=1
zi

zi+1

For the most common case of α = 0 in (7), both clusters have almost the
same number of nodes. For a 3-dimensional lattice La(z1+1)×(z2+1)×(z3+1), a
plane divides La(z1+1)×(z2+1)×(z3+1) into two clusters with the same number
of links. Figure 3 is an example for m = 2, in which z1 = 6 and z2 = 7
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Figure 3: Partitioning of two-dimensional lattice La7×8 for α = 1
20 .
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and Fiedler’s partitioning for α = 0.05. In this case c (La7×8) = 7 and

L = z1 (z2 + 1)+z2 (z1 + 1) = 97. Hence r (La7×8) =
c(La7×8)

L = 7
97 ≈ 7.22%

of all links will be cut by Fiedler’s partitioning. On the Figure 4 are given
partitions of La6×4×5(Figure 4(a)) for different values of α = 0.1(Figure
4(b)), 0.05(Figure 4(c)) and 0(Figure 4(d)).

(a) La6×4×5 (b) α = 0.1

(c) α = 0.05 (d) α = 0

Figure 4: Partitioning of three-dimensional lattice La6×4×5

3 Conclusion

We have applied Fiedler’s partitioning algorithm to an m-dimensional lat-
tice La(z1+1)×(z2+1)×...×(zm+1) and have calculated the size of the two clus-
ters, the number of links that are cut by this partitioning and the percentage
of cut links as a function of the Fiedler threshold α and the characteristic
dimensions of the lattice. In the most common case of α = 0, both clusters
have equal sizes. The number of cut links does not depend on α.
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A Appendix

A.1 The normalization coefficient of Cm
According to (1), we normalize the eigenvector of Cm as

(z1+1)×(z2+1)×...×(zm+1)∑
j=1

(
x(z1+1)×(z2+1)×...×zm (Cm)

)2
j
= 1

which is equivalent to determining K such that
zm∑
j=0

(
x(z1+1)(z2+1)...zm (Cm)

)2
j︸ ︷︷ ︸

(z1+1)(z2+1)...(zm−1+1) times

= 1

zm∑
j=0

K2 cos2
(2j + 1)π

2 (Zm+1)︸ ︷︷ ︸
(z1+1)(z2+1)...(zm−1+1) times

= 1

K2 (z1 + 1) (z2 + 1) . . . (zm−1 + 1)

zm∑
j=0

cos2
(2j + 1)π

2 (zm + 1)
= 1

Now, since
zm∑
j=0

cos2
(2j + 1)π

2 (zm + 1)
=

zm∑
j=0

1 + cos
(
(2j+1)π
zm+1

)
2

=
zm + 1

2
+ Re


zm∑
j=0

(
e

(2j+1)π
zm+1

)j


=
zm + 1

2
+ Re

e
π

Zm+1
i
zm∑
j=0

(
e

2π
Zm+1

i
)j

=
zm + 1

2
+ Re

{
e

π
Zm+1

i e
2π·i

Zm+1
(Zm+1) − 1

e
2π·i

Zm+1 − 1

}

=
zm + 1

2
+ Re

{
e

π
Zm+1

i 1− 1

e
2π·i

Zm+1 − 1

}
=

zm + 1

2

We find that
K =

√
2

(z1 + 1) (z2 + 1) . . . (zm−1 + 1) (zm + 1)
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