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Abstract Network science has widely studied the properties of brain networks. Re-
cent work has observed a global back-to-front pattern of information flow for higher
frequency bands in magnetoencephalography data. However, the effective connec-
tivity at a local level remains yet to be analyzed. On a local level, the building blocks
of all networks are motifs. In this study, we exploit the measure of dPTE to analyze
motifs of the estimated effective connectivity networks. We find that some 3- and
4-motifs, the bidirectional two-hop path and its extended 4-node versions, are sig-
nificantly overexpressed in the analyzed networks in comparison with random net-
works. With a recently developed motif-based clustering algorithm we separate the
effective connectivity network in two main clusters which reveal its higher-order
organization with a strong information flow between posterior hubs and anterior
regions.
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1 Introduction

Analyzing the brain as a network has lead to new insights in neuroscience both in
understanding healthy and abnormal brain function [22]. Recent studies in neuro-
science applied the measure of Phase Transfer Entropy (PTE) to construct the ef-
fective connectivity network between brain regions and observed a global posterior-
anterior pattern in higher frequency bands [10]. However, the effective connectivity
at a local level remains yet to be analyzed. In this study, we analyze with PTE the
directionality at a local level in the form of network motifs.

Effective connectivity describes the causal effect of one brain region on another
region [1, 7]. To calculate this pairwise value between brain regions, the measure of
Transfer Entropy (TE) is often applied [19]. The TE from a region X to a region Y
quantifies the improvement in predicting the future of time series X if the present
value of Y is also included. Recent work has extended this measure to the analysis
of phase time series (Phase Transfer Entropy (PTE); [15]). The advantage of phase
time series instead of the original time series is the lower computational cost for
analyzing their pairwise interactions [18]. When representing brain regions as nodes
and assigning PTE values as link weights, one can build the effective connectivity
network. A previous study used PTE for magnetoencephalography (MEG) data from
healthy controls and discovered a posterior-anterior directionality in the effective
connectivity network of all frequency bands except for the theta band (where the
pattern was opposite) [10]. The emergence of this pattern is still not completely
understood. The hypothesis was that this global directionality is caused by different
local properties in the effective connectivity network [10].

On a local scale, network motifs are the building blocks of all networks [17].
On top of the micro-structure of nodes and links, network motifs are small sub-
graphs that form a higher-order organization of the network [4]. Most commonly,
network motifs of 3 or 4 nodes are analyzed. Friedman et al. [6] were recently able
to identify Alzheimer patients with directed motif analysis in a so-called progres-
sion network. Previous work reported that the motif with ID 78 was overexpressed
with respect to random networks in the structural brain networks of the cat and the
macaque [21] (see Fig. 2 for motif IDs). The same motif has also been perceived as
a good identifier for structural hubs [11]. Recently, Battiston et al. analyzed the in-
terdependency between structure and function in the human brain applying a multi-
layer motif approach [3]. With computational models of neuronal activity, Battaglia
and co-authors [2] linked effective connectivity motifs based on TE to underlying
structural motifs and suggested that changes in the effective connectivity lead to
different global directions of information flow. With similar motivation of linking
frequencies of single motifs to global outcomes, Benson et al. [4] exploited this
higher-order organization of the network to define a new motif-based clustering al-
gorithm.
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The aim of this study is to investigate effective connectivity motifs in empirical
data with the measure of PTE. Therefore, we first explain the construction of the
effective connectivity network based on the sending and receiving properties of a
node. Then, we analyze the significant motifs in this network. Furthermore, we ap-
ply the recently developed motif-based clustering algorithm by Benson et al. [4] on
the effective connectivity brain network.

2 Methods

This section explains the measure of directed Phase Transfer Entropy (dPTE), the
construction of the directed networks, the motif search and our application of the
motif-based clustering.

2.1 Directed Phase Transfer Entropy

The effective connectivity network is based on MEG measurements1 of 67 healthy
controls from a preceding study [10]. We focus our analysis on the alpha2 fre-
quency band (10-13 Hz) because the previous study observed a significant pattern
of posterior-anterior information flow for this frequency band. For every region of
interest (ROI) X we compute a time series in the form of a phase time series [18].
We denote a possible value of the signal of region X at time t by xt and abbre-
viate the probability that the signal of X equals xt at an arbitrary time point t to
Pr[Xt = xt ] = Pr[xt ]. The information flow between two ROIs or nodes, X and Y , is
then quantified by the Phase Transfer Entropy [15]

PT EXY (h) = ∑ Pr [xt+h,xt ,yt ] × log
(

Pr [xt+h|xt ,yt ]

Pr [xt+h|xt ]

)
, (1)

for a certain time delay h, where the sum runs over all possible values xt , xt+h and
yt of the signals. The (joint) probabilities are determined over histograms of their
occurrences in an epoch [15]. Following Hillebrand et al. [10] we fix h at

h =
Ns ·NROI

N±
, (2)

1 The MEG data were recorded using a 306-channel whole-head MEG system (ElektaNeuromag,
Oy, Helsinki, Finland) during a no-task, eyes-closed condition for five consecutive minutes. A
beamformer approach was adopted to project MEG data from sensor space to source space [9] and
the automated anatomical labelling (AAL) atlas was applied to obtain time series for 78 cortical
regions of interest (ROIs) [8, 24]. For each subject, we extracted the first 20 artefact-free epochs of
4096 samples (3.2768 s).
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where Ns = 4096 and NROI = 78 are the number of samples and the number of ROIs,
respectively, and N± counts the number of sign changes for the phase across time
and ROIs.

Motivated by Hillebrand et al. [10], we define the dPTE for nodes X and Y as

dPT EXY =
PT EXY

PT EXY +PT EY X
, (3)

which is a measure of the preferred direction of information flow between nodes X
and Y . Since the PTE can only take positive values, this definition of dPTE is well-
defined and its value ranges from 0 and 1. If the predominant flow of information is
from node X to node Y , then 0.5 < dPT EXY < 1, else 0 < dPT EXY < 0.5.

2.2 Constructing the Directed Network

The pairwise dPTEs over all ROIs can be interpreted as a weight matrix of a fully
connected network. Since the data is from 67 subjects each over k = 20 epochs, we
have 1340 weighted networks to begin our construction. We apply a procedure to
thin out links and induce a directionality per link instead of a weight. After this trans-
formation, which we call “sparsificiation”, we obtain a sparse directed (unweighted)
network for each subject, which is amenable for motif search and analysis.

The sparsification (see Fig. 1) contains two steps. First, we discard all links
whose weights are in close proximity to 0.5. More precisely, every link whose aver-
age weight (over all epochs) is within the closed interval [0.5−ασ ,0.5+ασ ] will
not be considered, where σ is the standard sample deviation taken over all epochs
over all pairs of nodes and α is a positive real control parameter. Under the assump-
tion of a normal distribution with mean 0.5, the 3σ -rule states that this procedure
will remove approximately 68% for α = 1.0 and 95% for α = 2.0 of all links.

Fig. 1 Schematic overview of
the two steps for constructing
the directed network (sparsifi-
cation): (1) discard links close
to 0.5 (2) induce directionality
for remaining links.
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In a second step, we determine for each remaining link whether it should be
bi- or uni-directional, and in case of the latter, in which direction the links should
be oriented. Clearly, all remaining link weights are now bounded away from 0.5,
though it is possible, that for different epochs a single link weight might be lower
or higher than 0.5, which makes it ambiguous which member of the node pair is
the dominant sender and which the dominant receiver. Let k+ (k−) be the number
of epochs that the dPT EXY is above (below) 0.5 where k = k+ + k− is the total
number of epochs for a subject. If k+/k ≥ 0.75, we assume X to be a dominant
sender and thus we induce a uni-directional link from X to Y . Contrary, we assume
X to be a dominant receiver if k+/k≤ 0.25 and point the link from Y to X . If neither
applies (0.25 < k+/k < 0.75), we assume that X and Y frequently change roles
between dominant sender and dominant receiver. Thus, we induce a bidirectional
link between them.

2.3 Motif Search

We are using the excellent mfinder software [13], provided by the Uri Alon Lab2,
to search for motifs. We also adopted the motif IDs of mfinder for this work, to
be consistent. With sparsification, we generate one directed network for each of
the 67 subjects as input for mfinder. Additionally, we construct an averaged effec-
tive connectivity network (short: averaged network) by considering all epochs of
all subjects together. This construction results in a “virtual” subject with k = 1340
instead of k = 20 epochs. We set α to 1.0 and 2.0 to compare on different levels of
sparsity.

Since the complexity of motif search increases dramatically with the size of the
motif, we restrict mfinder to search only for subgraphs of 3 and 4 nodes (further
called 3-motifs and 4-motifs). The mfinder program executes two tasks: first, it
counts the frequency of all motifs in the original input network. Second, it generates
a number of random networks (null model) and determines the motif frequencies in
each of them as well. In total, mfinder generates 1000 random networks using the
switching algorithm described by Milo et al. [16] for each single input network. We
use the default parameters for mfinder, which preserve the degree sequence of the
original network and the number of bidirectional links.

A motif is called overexpressed if it occurs significantly more often in the original
network than in the random networks. It is essential to keep in mind that a motif
which is not overexpressed may still occur quite frequently in the original network,
though it arises in a similar frequency by a random link rewiring process. Thus,
it can be argued that overexpressed motifs must carry some functional importance
for the underlying system since they do not arise merely by chance. We report the
motifs that mfinder determines to be overexpressed with z-score > 2.

2 https://www.weizmann.ac.il/mcb/UriAlon/download/network-motif-software
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2.4 Motif-Based Clustering Algorithm

Benson et al. [4] developed a clustering algorithm that partitions a network based
on one specific overexpressed motif M. The algorithm constructs clusters by ’cut-
ting’ through the minimal possible number of those motifs. Formally, the clustering
minimizes the motif conductance defined as

φM(S) =
cutM(S,Sc)

min[volM(S),volM(Sc)]
, (4)

where S is the set of nodes in the cluster and Sc its complement. Here, cutM(S,Sc)
is the number of M motifs that is cut through and volM(S) the number of M motifs
that is completely in S. The algorithm can be regarded as an extension of the clas-
sic spectral clustering algorithm [25]. The obtained clusters reveal a higher-order
organization of the network based on the specific motif M. An implementation of
the motif-based clustering algorithm was released as part of the open SNAP frame-
work [14], which we applied to the averaged network using default parameters.

3 Results

We present results for the motif search on 3 and 4 nodes for the individual subjects
and for the averaged network, respectively. In addition, we show the results of the
motif-based clustering algorithm on the averaged network.

3.1 Significant 3-Motifs

For both variants of the sparsification method (α = 1 and α = 2), we find the same
significant 3-motifs over all subjects meaning that those motifs are more frequent in
our analyzed networks than in the null model (see Fig. 2). Those five motifs are not
triangular but include all 3-motifs with two links (except for the 2-hop path motif)
(Fig. 2(b)- 2(f)). The absolute frequency of those motifs is displayed as a histogram
in Fig. 2(a) for the±σ and the±2σ sparsification, respectively. The analysis on the
averaged effective connectivity network confirms the over-representation of the mo-
tif with ID 78, the bidirectional 2-hop path(Fig. 2(d)), which is the only significant
motif that has been found for different sparsification methods (z-scores: 88.25 for
±σ sparsification and 82.7 for ±2σ sparsification).
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3.2 Significant 4-Motifs

In Fig. 3(a) we present a histogram of all significantly overexpressed 4-motifs with
the two different sparsification levels. Twelve 4-motifs were found overexpressed in
all 67 subject networks (Fig. 3(a), for a visualization see Figs. 3(b)-3(m)).

Analyzing the averaged network we find 3 significant motifs with the±σ sparsi-
fication method (see Figs. 3(l) - 3(n), z-scores: 203.74 for ID 13260, 111.89 for ID
4382 and 14.85 for ID 4698) and none with the±2σ method. The two 4-motifs with
number 13260 and 4382, the bidirectional ring and the bidirectional star, respec-
tively, have the highest z-scores in the averaged effective connectivity network and
are a subset of the significant 4-motifs found for every individual subject (Figs. 3(l)
and 3(m)). The overexpression of those two motifs cannot be explained by the higher
number of bidirectional links in the effective connectivity network since the null
model contains the same number of bidirectional links.
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(a) Histogram of all significantly overexpressed 3-motifs.
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Fig. 2 (a) Frequency of significantly overexpressed 3-motifs over all regarded subjects after the
±σ and ±2σ sparsification, respectively. (b)-(f) All significant 3-motifs over all subjects together
with their motif ID. The yellow motif with ID 78 is also overexpressed in the averaged network.
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(a) Histogram of the 20 most commonly overexpressed 4-motifs.
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(l) 4382 (m) 13260 (n) 4698

Fig. 3 (a) Histogram of the 20 most commonly overexpressed 4-motifs over all subjects after the
±σ and ±2σ sparsification, respectively. An asterisk marks the motifs that are also overexpressed
in the averaged network. (b)-(m) The twelve 4-motifs that are overexpressed after the ±σ spar-
sification in every subject with their motif ID. The yellow motifs are also overexpressed in the
averaged network. (n) Third overexpressed 4-motif in the averaged network, ID 4698.

3.3 Motif-Based Clusters

Following the approach of [4], we apply the motif-based clustering algorithm on the
averaged effective connectivity network. Since for both sparsification methods, the
3-motif with ID 78 was significantly overexpressed in the averaged effective con-
nectivity network and in every subject network, we cluster according to this motif.
We find two clusters with the sparsified network for ±σ (Fig. 4). The frontal brain
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Fig. 4 The two clusters (in
red and yellow) on the tem-
plate brain obtained via the
motif-based clustering algo-
rithm after the ±σ sparsifica-
tion based on the motif 78.

regions seem to be consistently part of the red cluster and the distribution of the
clusters across the two brain hemispheres shows a strong symmetry (Fig. 4). The
sparser network resulting from the ±2σ sparsification method was disconnected.
Consequently, we could only obtain a motif-based clustering of the largest con-
nected component (see Appendix Fig. 5).

4 Discussion and Conclusions

Evaluating the overexpressed motifs for individual human subjects, it is interest-
ing that the 3-motif with ID 78 and its extended 4-node versions have also been
overexpressed in other cortical networks of the cat and the macaque brain [21]. In
these motifs some nodes seem highly integrated with their neighbors while others
are more segregated. Sporns et al. [21] associated these motifs and the absence of
triangular shapes with the general principles of integration and segregation in the
functional organization of brain networks. This principle originates from studies of
neuronal dynamics where signals from many different spatially segregated groups of
neurons are integrated with each other forming one coherent signal [20, 23, 26]. In
addition, motif 78 can help to identify hubs in structural brain networks by counting
the number of times a node participates in that motif [11]. A possible explanation
for this identification is that a hub often connects two otherwise disconnected brain
regions reciprocally with each other functioning as a ’bridge’ for the information
flow [11]. Thus, the pre-dominance of motif 78 in the analyzed effective connec-
tivity network suggests that hubs are ’bridges’ for the information flow. The impact
on the global network could be further investigated by the new metric of ’bridge-
ness’ [12] in future research. Also the other significant 3-motifs are present in brain
networks from the literature. For example, motif 6 has been identified in a previ-
ous modeling study with Granger causality as the driving structure behind many
neuronal dynamics [5].
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The fact that the motif-based clustering reveals a strong symmetry between the
brain hemispheres is remarkable and supports the idea of a higher-order organiza-
tion of the effective connectivity brain network. In comparison, the results of a stan-
dard spectral clustering algorithm (edge-based conductance) show a much weaker
symmetry and a more disconnected spatial distribution of the two clusters (see Ap-
pendix Fig. 6). However, a rather dense network (±σ ) seems to be necessary for the
emergence of a higher-order structure since the clustering for the sparser averaged
network (±2σ ) appears to be frail (see Appendix Fig. 5). Thus, finding an optimal
link density for motif-based clustering requires further investigation.

Looking into the obtained clusters, we find that the red cluster in Fig. 4 consists
of all frontal brain regions and some posterior regions which are known to be the
strongest structural hubs [10]. The fact that the motif-based clustering algorithm
does not separate posterior hubs and frontal regions suggests that there might be
an increased information flow between them. This result strengthens the hypothesis
from [10] that the posterior hubs play a crucial role in the global information flow
of the effective connectivity. More specifically, posterior hubs in the brain seem to
play the role of a ’bridge’ for not only the local but also the global information
flow. However, this ’bridge’ seems to be active in varying pre-dominant directions
for different frequency bands [10]. To conclude, our study shows a promising way
of integrating local structures to explain the emergence of global patterns in brain
networks. This approach might be a first stepping stone towards understanding the
information flow in the healthy brain which could, in the future, support the diagno-
sis of brain disorders.
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Appendix

Fig. 5 The two main clusters
(in red and yellow) of the
largest connected component
on the template brain obtained
via the motif-based clustering
algorithm after the ±2σ

sparsification based on the
motif 78. The blue colored
regions were not in the largest
connected component.

Fig. 6 The two main clus-
ters (in red and yellow) on
the template brain obtained
via the spectral clustering
algorithm with the ±σ spar-
sification. In comparison with
the motif-based clustering in
Fig. 4, the red cluster looks
more disconnected and does
not include all anterior re-
gions anymore.
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