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Abstract13

Background14

Epilepsy surgery is the treatment of choice for drug-resistant epilepsy patients. However, seizure-freedom is15

currently achieved in only 2/3 of the patients after surgery. In this study we have developed an individualized16

computational model based on MEG brain networks to explore seizure propagation and the efficacy of different17

virtual resections. Eventually, the goal is to obtain individualized models to optimize resection strategy and18

outcome.19

Methods20

We have modelled seizure propagation as an epidemic process using the susceptible-infected (SI) model on21

individual brain networks derived from presurgical MEG. We included 10 patients who had received epilepsy22

surgery and for whom the surgery outcome at least one year after surgery was known. The model parameters23

were tuned in order to reproduce the patient-specific seizure propagation patterns as recorded with invasive24

EEG. We defined a personalized search algorithm that combined structural and dynamical information to find25

resections that maximally decreased seizure propagation for a given resection size. The optimal resection for26

each patient was defined as the smallest resection leading to at least a 90% reduction in seizure propagation.27

Results28

The individualized model reproduced the basic aspects of seizure propagation for 9 out of 10 patients when29

using the resection area as the origin of epidemic spreading, and for 10 out of 10 patients with an alternative30

definition of the seed region. We found that, for 7 patients, the optimal resection was smaller than the resection31

area, and for 4 patients we also found that a resection smaller than the resection area could lead to a 100%32

decrease in propagation. Moreover, for two cases these alternative resections included nodes outside the resection33

area.34

Conclusion35

Epidemic spreading models fitted with patient specific data can capture the fundamental aspects of clinically36

observed seizure propagation, and can be used to test virtual resections in silico. Combined with optimization37

algorithms, smaller or alternative resection strategies, that are individually targeted for each patient, can be38

determined with the ultimate goal to improve surgery outcome. MEG-based networks can provide a good39

approximation of structural connectivity for seizure spreading computational models, and facilitate their clinical40

use.41
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1 Introduction42

Epilepsy is one of the most common neurological disorders, affecting between 4 and 10 per 1000 people worldwide43

[1]. There is not one single cause of epilepsy: it often occurs as an associated symptom of an underlying44

disease, but many other times it is produced by unknown causes [2]. This complicates the understanding of45

seizure dynamics, and to this day the microscopic mechanisms that lead to seizure generation and propagation46

are not fully understood [3]. It is generally assumed that a shift from normal neuronal activity to excessive47

synchronization [4] occurs due to decreased inhibition [5], but the actual nature of this transition is not clear.48

Epilepsy is initially treated by anti-epileptic drugs (AEDs), but this approach is not effective for roughly49

1 out of 3 people [6]. For these drug-resistant patients, epilepsy surgery is an optional treatment if a focal50

origin of the seizures can be found. The surgery then aims to remove or disconnect the brain regions thought51

to be involved in seizure generation. Currently, seizure freedom is achieved in up to 2 out of 3 patients who52

undergo epilepsy surgery, although surgery outcome varies greatly depending on epilepsy type [7]. Even when53

surgery is not completely successful, the majority of patients will still experience a reduction in seizure frequency54

or intensity after surgery. However, side-effects and cognitive complaints can also occur after surgery. These55

depend on the brain areas resected, but are difficult to predict accurately [8].56

Traditionally, efforts to improve epilepsy surgery have aimed to better characterize the epileptogenic zone57

(EZ, defined as the minimal brain area or areas that need to be removed or disconnected to achieve seizure58

freedom [9]; by definition, this can only be confirmed after surgery, and prior to it only a hypothesis can be59

made). However, in recent years – and in line with the increasingly common view of the brain as a complex60

network – epilepsy is seen as a network disorder. Attention is thus shifting towards the definition of epileptogenic61

networks that can capture more details of seizure dynamics and the distribution of epileptiform activity [10–12].62

An increasing number of findings support this perspective: topological properties of epileptogenic brain networks63

have been found to deviate from those seen in healthy controls [13, 14], and abnormal patterns of functional64

connectivity emerge [15–17] (although the results of different imaging modalities are sometimes contradictory65

[15–20]). A common finding in pathological brain networks is the association of disease with network hubs [21,66

22]. In the case of epilepsy, hubs may facilitate the propagation of epileptiform activity to the rest of the brain67

[23–25]. Moreover, several studies have pointed out the existence of pathological hubs: abnormal, hyperconnected68

regions in the vicinity of the epileptic focus, which may facilitate seizure propagation [25–27].69

Importantly, the network perspective of epilepsy implies that the effect of a resection cannot be predicted70

directly from the location of the removed region alone [28]: local resections can have widespread effects, but at71

the same time might not prevent the epileptogenic network from forming a new EZ eventually [29]. Computer72

models are then necessary to help predict the effect of a given resection [30]. Integrating patient specific data of73

different modalities, computer models allow us to test different resections in silico – i.e. using virtual resections –74

together with different markers of the EZ. Within this framework, Hebbink et al. [31] showed that the resection of75

the pathological network node is not necessarily the best approach to alleviate seizures, whereas Lopes et al. [32]76

found that the fraction of resected rich-club nodes correlated with surgery outcome. Going beyond topological77

network analysis, the simulation of ictal activity on top of brain networks can aid the identification of the EZ78

and prediction of surgery outcome, as well as predict possible side-effects. Such computational models can be79

used to identify epileptogenic areas [33, 34] or analyze different resection strategies [26, 32, 35–38], such that80

patient-specific resection strategies, that may lead to a better outcome or fewer side-effects than the standard81

surgery, can be tested [33, 39–41]. Validation of the models is usually attempted by looking for differences in the82

model predictions between seizure free and non-seizure free patients [42, 43] or by correlating seizure propagation83

on the model with the empirical data [44].84

A basic consideration in the model definition is thus the nature of the underlying network. The temporal85

and spatial resolution of the resulting network-based model, and the interpretation of the connections between86

regions, will depend on the modality that was used to define the network structure. Studies on epileptogenic87

networks have considered both functional [32, 35, 37, 42, 43, 45] and structural [33, 36, 40, 41] networks, as they88

are both affected in patients with epilepsy [40–43]. However, functional networks can capture abnormalities in89

brain activity even in the absence of structural abnormalities [46]. Functional networks based on intracranial90

recordings [32, 35, 37, 42, 43] usually include ictal data and allow for highly precise characterization of some brain91

areas, however spatial sampling is sparse and biased due to an a priori hypothesis of the EZ, which may lead to92

bias in the analysis. Moreover, these invasive recordings are not always part of the presurgical evaluation. Non-93

invasive methods, such as Electro- and Magneto-Encephalography (EEG/MEG) have no risks of complications94

[47]. MEG is less affected by the skull and other tissue in the head, is reference-free and has higher spatial95

resolution than clinical scalp EEG [48]. This allows for a more accurate estimation of functional interactions96

between brain regions, and thus a more accurate reconstruction of the functional networks. MEG interictal97

resting-state functional brain networks have been used previously to identify the EZ [11, 27].98
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In general, most of the studies cited above made use of highly detailed non-linear models, such as neural mass99

models or theta models [49]. These models depend on several parameters that need to be adjusted beforehand,100

which complicates the optimization of the model and makes it difficult to obtain conclusions that are gener-101

alizable. As it is usually the case, an interplay exists between the generalizability and accuracy of the model,102

such that optimizing the predictive power of a model often means reducing the number of tunable parameters103

[50]. Thus, simpler models with few parameters might prove more reproducible, especially if the behavior of104

the model is understood mathematically. In this regard, one particular framework of relative mathematical105

simplicity that may capture the fundamental aspects of seizure propagation is that of epidemic spreading models106

[51]. These models simulate the propagation of an agent from some given location to other connected areas, a107

basic phenomenon appearing in a multitude of systems. Such models have been used, for instance, to study the108

spreading of pathological proteins on brain networks [52], or the relation between brain structure and function109

[53].110

We propose that epidemic models can also provide a good representation of the initial steps of seizure111

propagation, during which the anomalous highly synchronized ictal activity propagates from the EZ to other112

regions. Moreover, as it is the case in epilepsy surgery, studies on epidemic models often try to find ways to113

stop or limit the propagation of the epidemics. Thus, epidemic models could also aid the planning of epilepsy114

surgery. For instance, the fundamental role of hubs in propagation is a well-known result of epidemic spreading115

[54], and targeting hub regions is often the most efficient way to obtain global immunization [55, 56]. Data of116

outbreak patterns can also be used retroactively to find the location of the origin of an epidemic [57, 58]. Within117

this framework, in a previous study [41] we modelled seizure propagation as an epidemic spreading process and,118

using the eigenvector centrality as a surrogate measure, found that the size of the resection area could be largely119

reduced with only a small decrease in the efficacy of the virtual surgery.120

Here we defined an individualized seizure propagation model by making use of the Susceptible-Infectious (SI)121

model of epidemic spreading on top of a global brain network, for a group of 10 epilepsy patients who underwent122

epilepsy surgery, and for whom the surgical outcome at least one year after surgery was known. The network was123

based on the patient-specific MEG connectivity. The model parameters were tuned using information about the124

patient-specific seizure propagation patterns in invasive EEG recordings and the location of the resection area.125

First, we showed that, despite its simplicity, the model provides a good approximation to clinically observed126

seizure propagation patterns, and we fit the free parameters of the model to optimize the reproduction of the127

individual seizures. Secondly, we used the individualized model to test alternative resection strategies and,128

making use of an optimization algorithm, we found optimal – in terms of reduction of seizure propagation –129

personalized resections.130

2 Methods131

2.1 Patient group132

We retrospectively analyzed 10 patients (5 females) with refractory epilepsy (Table 1). All patients underwent133

epilepsy surgery at the Amsterdam University Medical Center, location VUmc, between 2016 and 2019. All134

patients had received a magnetoencephalography (MEG) recording, had undergone a SEEG (stereo-electro-135

encephalography) study, and underwent pre- and post-surgical MR imaging. All patients gave written informed136

consent and the study was performed in accordance with the Declaration of Helsinki and approved by the VUmc137

Medical Ethics Committee.138

The patient group was heterogeneous with temporal and extratemporal resection locations and different139

etiology. Surgical outcome was classified according to the Engel classification at least one year after the operation140

[59]. Patients with Engel class 1A were labelled as seizure free (SF), and patients with any other class were141

labelled as non seizure free (NSF). 3 patients were deemed NSF.142

2.2 Individualized Brain Networks143

The individualized computer model was based on the patient-specific brain network (see figure 1) reconstructed144

in the Brainnetome Atlas (BNA) from MEG scans, as detailed below. We have considered the structural network145

as the substrate for the propagation of ictal activity, in agreement with previous studies [41]. However, true146

structural networks (e.g. DTI - Diffusion Tensor Imaging networks) cannot be derived from the scans that147

the patients get as part of their routine pre-surgical evaluation, and would thus require an extra imaging step,148

increasing the personal and economic burden to apply the model clinically. On the contrary, MEG scans are,149

when available, part of the routine pre-surgical evaluation, and thus using MEG data to derive a surrogate150
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for structural networks reduces the burden and increases the applicability of the model. This can be done151

by considering a metric such as the uncorrected Amplitude Envelope Correlation (AEC). By not correcting152

for the effects of volume conduction, this metric closely resembles the underlying brain anatomy and therefore153

the structural connectivity. In order to validate the use of AEC-MEG networks as surrogate for structural154

connectivity, we have compared them with a phenomenological model for structural connectivity the exponential155

distance rule (EDR). This rule states that the weights of the connections between pairs of regions in the brain156

decay exponentially with the distance between them [60–62], and has been repeatedly validated in human DTI157

data [63–65]. In order to adapt this rule for the resolution of the BNA atlas (much lower than those used in158

animal and human-DTI studies, which defined brain parcelations of millions of ROIs, instead of the 246 of the159

BNA atlas), we computed the correlation between the network models for an array of decay-exponents, and160

found the one yielding the best fit for the AEC-MEG networks.161

Pre-operative Magnetic resonance imaging (MRI) scans were used for co-registration with the MEG data.162

MRI T1 scans were acquired on a 3T whole-body MR scanner (Discovery MR750, GE Healthcare, Milwaukee,163

Wisconsin, USA) using an eight-channel phased-array head coil. Anatomical 3D T1-weighted images were164

obtained with a fast spoiled gradient-recalled echo sequence. During reconstruction, images were interpolated165

to 1mm isotropic resolution.166

2.2.1 MEG acquisition167

MEG recordings were obtained during routine clinical practice using a whole-head MEG system (Elekta Neu-168

romag Oy, Helsinki, Finalnd) with 306 channels consisting on 102 magnetometers and 204 gradiometers. The169

patients were in supine position inside a magnetically shielded room (Vacummshmelze GmbH, Hanau, Germany).170

Typically, three data-sets of 10 to 15 minutes each containing eyes-closed resting-state recordings were acquired171

and used in the presurgical evaluation for the identification and localization of interictal epileptiform activity.172

Paradigms for the localization of eloquent cortex, such as voluntary movements and somatosensory stimulation173

[66], as well as a hyperventilation paradigm to provoke interictal epileptiform discharges, were also recorded but174

not analysed in this study. The data were sampled at 1250 Hz, and filtered with an anti-aliasing filter at 410 Hz175

and a high-pass filter of 0.1 Hz. The head’s position relative to the MEG sensors was determined using the signals176

from four or five head-localization coils that were recorded continuously. The positions of the head-localization177

coils and the outline of the scalp (roughly 500 points) were measured with a 3D digitizer (Fastrak, Polhemus,178

Colchester, VT, USA), and were later used for co-registration with the anatomical MRI.179

The temporal extension of Signal Space Separation (tSSS) [67, 68] was used to remove artifacts using Maxfilter180

software (Elekta Neuromag, Oy; version 2.1). The points on the scalp surface were used for co-registration with181

the anatomical MRI of the patient through surface-matching software. A single sphere was fitted to the outline182

of the scalp and used as a volume conductor model for the beamforming approach. For a detailed description183

and parameter settings see [66].184

2.2.2 MEG processing: Atlas-based Beamforming185

Neuronal activity was reconstructed using an atlas-based beamforming approach, modified from [69], in which186

the time-series of neuronal activation of the centroids of the ROIs were reconstructed [70]. We considered the187

246 ROIs in the BNA atlas [71], including 36 subcortical ROIs, whose centroids were inversely transformed to188

the co-registered MRI of the patient. Then, a scalar beamformer (Elekta Neuromag Oy; beamformer; version189

2.2.10) was applied to reconstruct each centroid’s time-series. The beamformer weights were calculated for each190

centroid separately to form a spatial filter so as to maximally let pass signals that originate from the centroid191

of interest and to attenuate all other signals. The weights were based on the lead fields (using the spherical192

head model and an equivalent current dipole as source model), the data covariance and noise covariance. The193

broadband (0.5− 48.0 Hz) data covariance was based on the entire recording (on average 799.23 seconds of data194

(range: 309.50 - 908.67) were used). A unity matrix was used as noise covariance when estimating the optimum195

source orientation for the beamformer weights [72]. The broadband data were projected through the normalised196

beamformer weights [73] in order to obtain time-series (virtual electrodes, VE) for each centroid [70].197

2.2.3 Brain Networks198

The time-series for each VE were visually inspected for epileptiform activity and artifacts. On average, 53.1199

(range: 19− 60) interictal and artefact-free epochs of 16384 samples were selected for each patient. The epochs200

were further analyzed in Brainwave (version 0.9.151.5 [75]) and were down-sampled to 312 Hz, both in the201

broadband (0.5 - 48 Hz) and in the alpha-band (8 - 13 Hz).202
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Figure 1: Individual Brain Networks. a) Weighted (and thresholded) resting-state broadband-MEG connectiv-
ity matrix for patient 4, for θ = 0.15. Each entry corresponds to a BNA region, and the regions have been re-ordered
to group regions in the same hemisphere. In this representation, ROIs 1-105 correspond to the left cortical regions,
ROIs 106-210 to the right cortical regions and ROIs 211-246 to the subcortical regions (in alternating hemisphere
order). The strength of each connection is indicated by the colorcode. In red we show the connections from and
to the resection area (RA). b) Distribution of average distances to the RA according to eq.(S2) for patient 4, in
dimensionless units. The points mark the centroids of the BNA ROIs, and the color scale indicates the effective
distance of the ROI to the resection area (RA), which appears as black dots. c) Zoom-in of the adjacency matrix:
RA and surrounding nodes. d) Illustrative representation of the RA (big black circles) and all the links connecting
it with the rest of the network. Figures with brain representations have been obtained with the BrainNet Viewer
[74].
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Brain networks were generated using the 246 VEs as nodes (see figure 1a). Coupling strength (i.e. the203

elements wij of the weight matrices) was estimated by the AEC (Amplitude Envelop Correlation) [76–79]. The204

uncorrected AEC (i.e. without correcting for volume conduction) connectivity metric was selected as it maintains205

information on the structural connectivity pattern, whilst including information on long-range connections. AEC206

values range from 0 (no connectivity) to 1 [80]. The resulting networks were thresholded at different levels θ207

indicating the percentage of remaining links, and the resulting average connectivity κ = θN of the network was208

determined. We considered a non-uniform grid in θ, with values θ = 0.01, 0.02, 0.04 ..., 0.10, 0.15, ... 0.50,209

to account for the fact that the model is more sensitive to connectivity changes for small θ. Notice that the210

networks were thresholded but not binerized, so that wij remains a real variable (wij ∈ [0, 1]). The resulting211

weight matrix is represented in figure 1a for a characteristic case.212

2.2.4 Resection Area213

The resection area (RA) was determined for each patient from the three-month post-operative MRI. This was214

co-registered to the pre-operative MRI (used for the MEG co-registration) using FSL FLIRT (version 4.1.6) 12215

parameter affine transformation, following previous studies [27, 30, 35, 36, 41, 44, 81]. The resection area was216

then visually identified and assigned to the corresponding BNA ROIs, name those that were overlapping for at217

least 50% with the resection area. Visual inspection confirmed that the co-registration was accurate and that218

any differences due to tissue adaptation after the surgery were small and at the sub-ROI level. In figure 1 we219

illustrate the resection area and its connectivity structure with the rest of the network for one patient.220

2.3 Individualized Propagation Pattern221

All patients underwent stereo-electroencephalography (SEEG) electrode implantation. The number and loca-222

tion of the intracerebral electrodes (Ad-Tech, Medical Instrument Corporation, USA, 10-15 contacts, 1.12 mm223

electrode diameter, 5 mm intercontact spacing; and DIXIE, 10-19 contacts, 0.8 mm electrode diameter, 2 mm224

contact length, 1.5 insulator length, 16−80.5 insulator spacer length) were planned individually for each patient225

by the clinical team, based on the location of the hypothesized seizure onset zone (SOZ) and seizure propagation226

pattern. Implantation was performed with a stereotactic procedure. The number of electrodes per patient varied227

between 9 and 15 (average = 11.8) and the total number of contacts between 99 and 194 (average = 125.6).228

Details of the number of electrodes and contact points for each patient are indicated in table 1.229

The locations of the SEEG contact points were obtained from the post-implantation CT scan (containing230

the SEEG electrodes) that was co-registered to the preoperative MRI scan using FSL FLIRT (version 4.1.6) 12231

parameter afine transformation (see figure 2a). Each electrode contact point (CP) was assigned the location232

of the nearest ROI mass center. Because BNA ROIs are in general larger than the separation between contact233

points, different CPs can have the same assigned ROI. We refer to the set of ROIs sampled by the SEEG CPs234

as SEEGROI, with the size of the set being NSR (NSR values for all patients are reported in table 1).235

Based on the clinical recordings, a seizure propagation pattern was built indicating the order of activation236

of the electrode CPs for a typical seizure, as shown in figure 2b. In order to do so, the start of ictal activity237

of typical seizures was visually assessed for each SEEG CP by a clinician expert. Then, the CPs were grouped238

into activation steps according to when ictal activity was first observed. The seizure pattern was built from one239

typical seizure for each patient. This activation pattern was then translated into the BNA space (see figure 2b),240

so that the each ROI i in the sampled set SEEGROI was assigned an activation step. Finally, we calculated the241

activation rank of each ROI in SEEGROI, such that the SEEGROI ROIs were ordered and ranked according to242

their activation step, and groups with the same rank (i.e. in the same activation step) were assigned a rank243

equal to the midpoint of unadjusted values (see figure 2b). This yields the SEEG pattern RANKSEEG
i indicating244

the activation rank of each ROI i in SEEGROI.245

2.4 Seizure Propagation Model246

2.4.1 SI Dynamics247

Seizure propagation was modelled via an epidemic spreading model: the susceptible-infected (SI) model [51].248

This model depicts the propagation of an epidemic process on a network from a set of seed regions to the rest249

of the nodes. The model only accounts for the propagation process, as it does not include any mechanisms250

for the deactivation of the affected regions. It thus represents the initial steps of the propagation of a seizure,251

before inhibition takes place and the affected regions start to deactivate. Thus, we do not try to mimic the252

complicated processes involved in seizure generation and propagation with this model, which is used here as an253
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Figure 2: Individualized Seizure Propagation Pattern. a) SEEG electrodes for patient 4. Black and gray dots
indicate the BNA ROIs’ mass centers, respectively for the left and right hemispheres (different colors are used for
visualization purposes). This patient had 11 intracranial electrodes implanted, each electrode is shown in a different
color. b) Corresponding seizure pattern constructed from the clinical SEEG recordings. First, different activation
steps were identified in the seizure recordings, together with the corresponding contact points (CPs). In the case
depicted here, typical seizures consisted of 6 propagation steps, with step 1 depicting the seizure onset zone (as
indicated by the SEEG recordings), and step 6 signalling the generalization of the seizure to all sampled CPs (note
however that in general not all CPs need take part in the seizure propagation pattern). This propagation pattern
was then translated into the BNA space, and the sampled ROIs are indicated here as large colored spheres. Thus,
only the BNA ROIs sampled by the SEEG electrodes are included in the pattern, which in this case corresponded to
a total of NRS = 49 sampled ROIs (NRS values for all patients are reported in table 1). The color code in the figure
indicates the propagation step in which the corresponding CP is involved in ictal activity (i.e. Act. Step). Small
grey dots mark the ROIs not included in the SEEG pattern. Finally, in order to enable comparison with the SEEG
propagation pattern with the one modelled via the SI dynamics via the Mann-Whitney U test, we calculated the
activation rank (Act. Rank) of each ROI, such that the ROIs were ordered and ranked according to the activation
step, and groups with the same rank were assigned a rank equal to the midpoint of unadjusted values.
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Figure 3: Seizure propagation model. Exemplary SI propagation process for patient 4. (a) I(t) (red line) and
the fraction of newly infected nodes at time t (I(t)−I(t−1), blue line), as functions of time. (b) Model propagation
pattern showing the probability pi(t), as indicated by the color scale, that a given ROI i (y-axis) becomes infected
at time t (x-axis). (c) Average infection time for each ROI, ti. The seed (corresponding to the resection area,
shown in black triangles) is always infected at time 0. (d) Spatial representation of the ROIs mean infection time
ti. Each ROI is color-coded according to its average infection time. The resection area is shown as black circles.
The time unit is the number of simulation steps in all panels.
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abstraction that includes only the most relevant features of the initial steps of seizure propagation. Thanks to254

its simplicity, the model can be described by using only one parameter, the infection probability β, as described255

below. More complicated epidemic models, such as the SIR or SIS model [51], which include a deactivation256

mechanism, introduce more parameters that either have to be assumed or fitted with detailed data.257

Simulation of the epidemics on the network takes place as follows. Each node is characterized by its state:258

either S (susceptible) or I (infected). Initially, all nodes are in the S state, except for a set of nodes in the I259

state, which act as the seed of the epidemic (or seizure). At each time step, each infected node can propagate260

the infection independently to any of its neighbours with probability βwij , where β characterizes the rate of261

the epidemic spreading and wij is the connection strength between nodes i and j as given by the MEG-AEC262

adjacency matrix. The fraction of infected nodes at each time is given by I(t). If all nodes are connected,263

eventually the epidemic spreads over the whole network, I(t → ∞) = 1, as shown in figure 3a. However, the264

speed and pattern of the propagation depend on β and wij (see figure 3).265

In order to fit and validate the model, we first considered the situation of slow propagation in which only one266

new node is infected at each time step (formally corresponding to β → 0), and compared the propagation pattern267

of the modelled epidemic process with the clinical SEEG seizure pattern for different connectivity thresholds θ.268

The threshold was then fit to maximize the correlation between the modelled and clinical propagation patterns.269

Then, to study the effect of different virtual resections, we quantified the short-term propagation of the seizure270

as the fraction of infected nodes at time t0. Here we set t0 = 50 and, in order to account for different network271

densities, we set βθ = const = 4 · 10−4 (so that β = 0.01 for a network with 4% of the links, for instance). For a272

standard resection size SRA of 4 nodes this would correspond, in the uniform limit, to an infection of about 2/3273

of the nodes [50].274

SI dynamics was simulated in custom-made Matlab algorithms using Monte-Carlo methods, with NR = 104275

iterations of the algorithm for each configuration to assure convergence.276

2.4.2 Optimization of SI parameters: Individualized Propagation Model277

The SI dynamics were simulated as described above, leading to a probability map indicating the probability278

pi(t) that each ROI i became infected at step t, for each connectivity threshold θ, as shown in figure 3b. The279

mean activation time for each ROI was then calculated as ti =
∑T

t=0 pi(t), where T is the maximum integration280

time. ti describes the activation sequence of the ROIs during a modelled seizure (see figure 3c, d). Given that281

not all BNA ROIs were sampled by the SEEG electrodes, ti was then sub-sampled to the SEEGROI set, and282

the included ROIs were ranked according to ti. This ranking RANKSI
i constitutes the modelled or SI seizure283

propagation pattern, which is defined upon the same set of ROIs SEEGROI as the clinical one (RANKSEEG
i ), as284

shown in figure 4.285

Once the SI pattern had been constructed, the ranked correlation was computed to compare the SI and286

SEEG patterns (see figure 4a) via a Mann-Whitney U test. The correlation is thus defined as287

C =
cov

(
RANKSEEG

i ,RANKSI
i

)
σ
(
RANKSEEG

i

)
σ
(
RANKSI

i

) (1)

where cov(x, y) and σ(x) respectively stand for the covariance and standard deviation. The connectivity threshold288

that maximized this correlation was independently found for each patient (see figure 4b) and used for the289

corresponding individualized virtual resection model.290

Two possible seeds were considered for the SI dynamics: either the resection area (RA seed), or the hypoth-291

esized Seizure Onset Zone according to the SEEG clinical recordings (SOZ seed).292

2.5 Simulation of Resections293

Resections R of sets of nodes were conducted in the model by the use of virtual resections (VRs). For this, all294

the connections of the corresponding nodes were set to 0, so the size of the network was left unchanged, but the295

resected nodes became isolated. Each resection R was then characterized by measuring the fraction of infected296

nodes at a fixed time t0 after the resection had taken place, IR(t0) (see figure 5).297

The goal of epilepsy surgery is to completely stop seizure propagation (IR(t0) → 0 ∀t0) which, in the present298

model, can only be attained by (and it is always attained by [82, 83]) complete disconnection of the assumed299

seed region. Thus, in this study the effect of each resection was measured in terms of the decrease in the speed300

of seizure propagation, and the goal was to find the smallest resection able to reduce the initial propagation at301

t0 by 90%. That is, to find the smallest resection such that iR = IR(t0)/I(t0) ≤ 0.1, where I(t0) is measured on302

the original pre-resection network [41].303
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Figure 4: Correlation method. Here we illustrate, for patient 3, the correlation method to validate and fit the
seizure propagation model. For each network connectivity threshold θ, the SI dynamics was simulated over the whole
MEG network, and the propagation pattern was constructed for the ROIs sampled by the SEEG electrodes and
compared with the clinical SEEG pattern. Each pattern describes the activation order – or rank – of each sampled
ROI. Given that the clinical SEEG pattern is built in term of activation steps, different ROIs can have the same
ranking, as described in the main text. The modelled SI pattern was correlated with the clinical SEEG pattern, as
depicted in panel (a). This process was iterated for different connectivity thresholds θ leading the correlation curve
shown in panel (b), where the mean degree κ = θN is shown in the x-axis, and significant correlations are indicated
with a black circle. Finally, the connectivity leading to the maximum correlation was chosen. In the depicted case,
this corresponded to a mean degree of κ = 24.60 (θ = 0.1) leading a correlation of 0.62 (red triangle). This also
corresponds to the value of κ used for panel a.
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Figure 5: Virtual Resection Implementation. The target nodes for the virtual resection VR are all nodes at
two steps or less from the seed, i.e. the seed and its first and second neighbours (panel a). The initial seizure
propagation is the fraction of infected nodes at t0 = 50, I(t0) = 0.548 (panel b). A virtual resection of 5 nodes is
implemented in the network by setting to 0 all the links with the corresponding nodes, marked in black in panel
c. Seizure propagation is now reduced by approximately a factor 2 (IR(t0) = 0.280), and the probability that the
seizure reaches regions outside the seed decreases considerably (panel d). This example corresponds to patient 4.
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We defined a four-step method to find the optimal resection R∗ for each resection size S, R∗(S). That is, the304

resection leading to a minimum propagation IR∗(S)(t0). The optimization method made use of the Simulated305

Annealing algorithm [84] to speed up the exploration of the space of possible resections, and it considered a306

surrogate structural metric – the mean effective distance to the seed [50, 57, 58] – as a proxy for the SI dynamics307

to simplify the initial exploration (the method and algorithms used are described in detail in the Supplementary308

Information and figure S1). Then, the smallest resection leading to a 90% reduction in seizure propagation (as309

measured by IR(t0)), R90, was identified. We also identified, for each patient, the smallest resection leading310

to 100% reduction in propagation (IR(t0) = 0), R100. Finally, to characterize the effect of small resections in311

seizure propagation, we also defined the one-node resection, R1, as the resection of size 1 with a maximum effect.312

In principle all nodes in the network could be considered as possible targets to be resected. However, the313

effect of each node on seizure propagation decreases as it gets further from the seed (in terms of hops on the314

network). Therefore, here we considered only nodes that were at most two hops (without taking into account315

the edge weights) away from the seed (that is, the seed and its first and second neighbours), as depicted in figure316

5a.317

2.6 Statistics318

The comparison between network matrices was done via the Pearson’s correlation coefficient, calculated over the319

1-dimensional vector of connectivity (i.e. by stacking all matrix-connectivity columns one after the other).320

The Mann-Whitney U test was used to determine the correlation between the modelled and clinical seizure321

propagation patterns. To compare the optimal correlation obtained with different network definitions we used322

a paired Student’s t-test. Similarly, different seed definitions were compared using a paired Student’s t-test.323

Finally, for comparisons between SF and NSF patients, we used an unpaired Student’s t-test. All significance324

thresholds were set at p < 0.05.325

Finally, analyzed the effect of the size and mean degree of the resection area on the size of the 90% and 100%326

resections, and on the effect of the one-node resection, with a linear least squares fit.327

2.7 Data availability328

The data used for this manuscript are not publicly available because the patients did not consent for the sharing329

of their clinically obtained data. Requests to access to the datasets should be directed to the corresponding330

author. All user-developed codes are available from the corresponding author upon reasonable request.331

3 Results332

3.1 Preliminary results333

A total of 10 patients (5 females) were included in the study, 7 of whom were deemed SF one year after surgery334

(see table 1 for the patient details).335

We obtained the individual weighted AEC-MEG connectivity networks, with entries wij characterizing the336

coupling strength between ROIs i and j, for each patient in the alpha-band and the broad-band using the BNA337

atlas (246 nodes). The tables and figures shown in the main text report the results for the broad-band networks,338

details for the alpha-band can be found in the Supplementary Information. An exemplary matrix is shown in339

figure 1. We found that the broad-band MEG-AEC networks were a good surrogate for structural connectivity,340

with an average correlation of 0.51±0.06 when considering the literature-based decay exponent (equal to −0.188)341

and of 0.71± 0.08 when considering a modified exponent to fit this atlas resolution (−0.052).342

We constructed a clinical propagation pattern from the seizures observed with SEEG, for each patient. The343

pattern was initially defined in term of the electrodes CP, and then translated into the ROIs of the BNA atlas344

(see figure 2).345

3.2 Reproduction of Seizure Propagation Patterns346

As described in the methods section (see figure 4), we estimated the correlation C between the SI seizure pattern347

and the SEEG pattern for a range of connectivity values κ, as shown in figure 6a for the broadband networks348

and in figure S3 for the alpha-band networks. Then, to fit the spreading model to the SEEG propagation data,349

we selected the connectivity value κmax that maximized C(κ), for each patient. The maximum correlation Cmax350

obtained for each patient and the corresponding κmax are shown in figure 7a, b for the broadband networks351
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Figure 6: Reproduction of seizure propagation. Correlation between the modelled and clinically observed
seizure propagation patterns as a function of network density, for each patient, using the RA (panel a) and SOZ
seeds (panel b). Panel (c)) indicates the median curves for each case, as indicated by the legend. Circles in panels a
and b denote significant correlations (p < 0.05), and the optimal correlation for each case is marked with a triangle.

and in figure S4 for the alpha-band networks, and the corresponding values are reported in tables S1 and S2,352

respectively. Most cases presented a bimodal dependence of the correlation on the network density, so that there353

was a maximum for low density and another maximum for large density. Here we restrict our analyses to the first354

maximum, which yields only the fundamental connections that are needed to reproduce seizure propagation.355

We found that the model significantly reproduced the seizure propagation patterns for 9/10 patients. The356

average correlation was Cα = 0.38 for the alpha-band (α) networks and CBB = 0.41 for the broad-band (BB)357

networks. The difference between the two settings (0.03, BB > α) was not significant (t(9) = 1.81, p = 0.06).358

There were no significant differences in the optimal correlation between SF and NSF patients (Cα
SF − Cα

NSF =359

−0.05, p = 0.3, t(8) = −0.41; CBB
SF − CBB

NSF = −0.01, p = 0.5, t(8) = −0.07, unpaired Student t-tests).360

The optimal network density did not differ significantly between frequency bands (κBB − κα = 0.99, p = 0.4,361

t(9) = 0.15) or between the sub-groups (κα
SF − κα

NSF = 13.47, p = 0.05, t(8) = 1.91; κBB
SF − κBB

NSF = −16.75,362

p = 0.09, t(8) = −1.50).363

3.2.1 Alternative Definition of the Seed364

Different definitions of the seed can be considered. So far, we used the resection area, but in prospective studies365

the actual resection area will not be known. We therefore also considered the SOZ, as defined by the SEEG366

study, as the seed for the SI spreading (seed SOZ), and repeated the fit method as before (see figure 6b). We367

found that now the correlation between the model and the seizure pattern was significant for all patients, both368

for the alpha- and broad-band networks. The average correlations were respectively Cα = 0.47 and CBB = 0.51.369

The difference (Cα − CBB = −0.04) was significant (p = 0.04, t(9) = −1.99).370

We found that the optimal correlation was higher for SF than for NSF patients (Cα
SF − Cα

NSF = 0.06,371

CBB
SF − CBB

NSF = 0.05), although the difference was not significant (for α-networks: p = 0.2, t(8) = 0.79; for BB372

networks: p = 0.2, t(8) = 0.79). The optimal network density did not differ significantly between frequency373

bands (κBB − κα = −6.64, p = 0.08, t(9) = −1.52) or between the sub-groups (κα
SF − κα

NSF = 6.80, p = 0.2,374

t(8) = 0.79; κBB
SF − κBB

NSF = −1.51, p = 0.4, t(8) = −0.25).375

Overall, this seed definition reproduced the clinical seizure pattern better than the RA seed (Cα(SOZ) −376

Cα(RA) = 0.09, p = 0.07, t(9) = 1.63; CBB(SOZ) − CBB(RA) = 0.10, p = 0.04, t(9) = 1.99), although the377

difference was only significant for broad-band networks.378

3.2.2 Effect of Individualized Brain Networks379

Is patient specific connectivity required to reproduce the clinically observed seizure propagation patterns? In380

order to answer this question, we repeated the analysis using the average connectivity matrix (referred to as381

AV-α and AV-BB respectively for the alpha-band and broadband networks) as the network backbone for the SI382

spreading dynamics for all patients.383
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For the broad-band network, a significant correlation was found for 8 (10) patients using the RA (SOZ)384

seed (see figures 7 and S4). The average optimal correlation (CAV-BB(RA) = 0.36, CAV-α(SOZ) = 0.48) was385

smaller than for the individual patient networks (CBB(RA) − CAV-BB(RA) = 0.05, p = 0.08, t(9) = 1.95;386

CBB(SOZ) − CAV-BB(SOZ) = 0.03, p = 0.09, t(9) = 1.92), although the difference was not significant. For387

the alpha-band network, a significant correlation was found for 7 (10) patients using the RA (SOZ) seed. The388

average (optimal) correlation (CAV-α(RA) = 0.34, CAV-α(SOZ) = 0.46) was smaller than for the individual389

patient networks (Cα(RA)− CAV-α(RA) = 0.05, p = 0.2, t(9) = 1.30; Cα(SOZ)− CAV-α(SOZ) = 0.01, p = 0.8,390

t(9) = 0.28) but the difference was not significant.391

3.2.3 Average model392

Above, the optimal network connectivity was fitted independently for each patient using the SEEG data. In393

order to test if a mean model could be used for patients without SEEG recordings, we have estimated the median394

correlation yielded by the model for each connectivity value, as depicted in figure 6c for BB-networks and figure395

S3c for α-band networks, both for the RA and SOZ seeds. For BB-networks, the maximum overall correlations396

found were CBB
m (RA) = 0.37 for κ = 36.90 for the RA seed; and CBB

m (SOZ) = 0.49 for κ = 19.68 for the SOZ397

seed. For α-band networks, the maximum overall correlations found are Cα
m(RA) = 0.33 for κ = 19.68 for the398

RA seed; and Cα
m(SOZ) = 0.45 for κ = 19.68 for the SOZ seed. These values were smaller than the mean optimal399

results (CBB(RA) = 0.41, CBB(SOZ) = 0.51, Cα(RA) = 0.38, Cα(SOZ) = 0.47), but the decrease was less than400

15% on average and not significant (t(9) = 1.95, p = 0.08 and t(9) = 1.90, respectively for the α-band and BB401

networks).402

3.2.4 Comparison with Fully Connected Networks403

We also compared the correlation results with those obtained using a trivial fully connected network. Correlation404

results for this structure are shown in figures 7 and S4, together with the results obtained with individual broad-405

band networks (averaged) and when using the average broad-band network. Although the fully connected406

network achieved a significant correlation for some patients (3 patients for the RA seed and 5 for the SOZ seed),407

the correlation was always lower than for the individually optimised model, except for one patient using the SOZ408

seed, and the average was significantly smaller (CBB(RA) − CFCN(RA) = 0.29, p = 1.4 · 10−4, t(9) = −6.27;409

CBB(SOZ)− CFCN(SOZ) = 0.22 p = 0.005, t(9) = 3.72; Cα(RA)− CFCN(RA) = 0.27, p = 7 · 10−4, t(9) = 5.01;410

Cα(RA)− CFCN(SOZ) = 0.18, p = 0.013, t(9) = 3.09).411

3.3 Virtual Resection Analysis412

We made use of the VR optimization method illustrated in figures 5 and S1 to find optimal virtual resections of413

increasing size S, for each patient. Results of the virtual resection analysis are shown in figure 8 for all patients.414

Propagation after the resection (as measured by IR(t0)) decreased as S increased for all patients. However, the415

exact trend that was followed depended on the individual network structure and seed size. Patients 3, 5 − 7416

showed a rapid decrease of IR(t0)(S) for small S, whereas patient 9 showed a slower (parabolic) decrease. The417

remaining patients showed approximately linear decreases.418

Complete stop of seizure propagation was found for the trivial resection of size S = SRA, which corresponds to419

complete removal of the seed, for all patients. However, in some cases the 100% resection R100 (i.e. the smallest420

resection leading to a 100% decrease in seizure propagation) was smaller than resection area. This resection is421

indicated by black squares in figure 8. We found that R100 whas smaller than the resection area for 4 patients422

(patients 4, 6, 7 and 10). Moreover, for 7/10 patients we were able to find a resection R90, of smaller size than423

the actual resection, yet that achieved over 90% decrease in propagation, as indicated by red triangles in figure424

8. The sizes of the R90 and R100 resections relative to the size of the resection area, i.e. s90 = SR90/SRA and425

s100 = SR100/SRA, are shown in figure 9a for all patients. On average, s90 was 74% (range: 33 – 100%), whereas426

the s100 was 90% (range: 67 – 100%).427

The IR(S) curves shown in figure 8 indicate that, for some patients, performing just a one-node resection,428

R1, already had a large effect on (reducing) seizure propagation. This is explicitly shown by iR1 = IR1(t0)/I(t0)429

in figure 9b. The average effect of the 1-node resection was a 58% reduction in seizure propagation, although430

this number varied greatly among patients (range: 4–97%).431

We analyzed the effect of the seed size and its connectivity on these results (see Supplementary Information,432

figure S5) by correlating s90, s100 and iR1 respectively with the number of links with nodes that were in the433

resection area, ERA = SRA ∗ κRA. We found that s90 and s100 correlated positively with ERA (r(8) = 0.81,434

p = 0.005 and r(8) = 0.61, p = 0.07, for s90 and s100, respectively), although the correlation was only significant435
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Figure 7: Reproduction of seizure propagation patterns. Panels (a) and (c) show the average maximum
correlation Cmax achieved by the individual BB networks (BB, red circles), and the average BB one (AV-BB, black
squares), and the correlation found for the fully connected network (FCN, blue diamonds), respectively for the
RA and SOZ seeds. Panels (b) and (d) show the corresponding κmax for the individual (BB, red circles) and
average (AV-BB, black squares) networks. Significant correlations (p < 0.05) are indicated by a filled marker, and
non-significant ones (p > 0.05) by an empty marker. NSF patients are indicated by red labels.
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Figure 8: Optimal Virtual Resection. (a) Reduction in epidemic spreading for virtual resections of increasing
size S, as quantified by the decrease in IR(t0). Each curve corresponds to one patient, as indicated in the legend.
Red triangles mark the resection that achieved a 90% decrease in propagation, R90, and black squares the smallest
resection that stopped seizure propagation, R100. (b) In order to enable comparison of the VRs performance
between patients, we depict the normalized decrease in propagation, IR(t0)/I(t0) as a function of the normalized
resection size, S/SRA. The black dashed line indicates a 90% decrease in propagation.

for s90. On the contrary, iR1 correlated negatively with ERA (r(8) = −0.71, p = 0.02). These results indicate436

that larger seed regions required a comparatively larger resection.437

Finally, we analysed the location of the optimal resections found by the model (data not shown). We found438

that, for 1 patient, the optimal resection R90 included nodes outside of the resection area and, similarly, R100439

was also found to include nodes outside of the resection area for another patient.440

4 Discussion441

We have defined a patient-specific seizure-propagation model based on the SI spreading dynamics. The model442

considers the patient-specific AEC-MEG connectivity matrix and makes use of clinical SEEG data to define443

stereotypical seizure propagation patterns for each patient. Seizure propagation was then modeled as an SI444

process propagating from a seed – which we initially took to be the patient’s resection area (RA) – to the rest of445

the network. Comparing the propagation patterns in the model to those observed clinically, we showed that this446

simple model reproduces the main aspects of the individual seizure propagation patterns, and that an alternative447

definition of the seed – based on the SEEG recordings – might provide a better reproduction of the observed448

propagation patterns. The main free parameter of the model – the network mean connectivity – was fitted to449

maximally reproduce the clinical seizure pattern, independently for each patient.450

Using the model settings that optimally reproduced the clinically observed patterns, we then made use of451

the virtual resection technique to study alternative resections of smaller size or at different locations relative452

to the clinical resection area. The model suggested smaller virtual resections that were usually confined to the453

resection area, but in some cases included regions outside of the resected area.454

4.1 Modeling Considerations455

In this study we considered how individualized computer models, integrating patient-specific data from different456

modalities, can aid epilepsy surgery [26, 32–40, 42, 43, 85]. As opposed to previous studies which considered457

highly detailed, non-linear, stochastic models to simulate the activity of each brain region in detail [35, 37, 40,458

43, 86–88], here we considered an abstract model of epidemic spreading, the SI model, as a proxy for seizure459

propagation dynamics (see figures 3 and 4). Epidemic models capture the basic mechanisms of processes that460
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Figure 9: Analysis of optimal virtual resections. (a) Normalized size of the 90% (s90, dark blue asterisks)
and 100% (s100, turquoise crosses) resections for each patient. (b) Normalized effect iR1 = IR1(t0)/I(t0) of the one
node resection, for each patient. NSF patients are indicated by red labels in both panels.

diffuse on networked systems, and have been used, for example, to study the propagation of pathological proteins461

on brain networks [52] and of ictal activity [41].462

Moreover, epidemic models are supported by a well-grounded mathematical framework that can aid the463

exploration of the model. For instance, the fundamental role of hubs in seizure propagation is expected from464

a spreading perspective: hubs can act as super spreaders, being responsible for a disproportionate number of465

infections [54, 89], and their existence enhances epidemic spreading, both increasing the speed of propagation466

and decreasing the epidemic threshold [51]. On the contrary, a strong community structure can help control467

the epidemic, which may remain trapped in one community [90, 91]. This result also aligns with the clinical468

observation that often seizure propagation can be restricted to one or a few brain lobes [1], in the case of focal469

epilepsy. This is characterized by focal seizures that remain within some regions and only sometimes brake470

through the inhibitory “wall” and generalize. Interestingly, seizures originating in certain regions (such as the471

temporal lobes) are more likely to remain focal than others (such as frontal seizures). Similarly, other network472

characteristics such as temporal changes in connectivity [92, 93] or degree correlations can also alter behavior of473

spreading processes [94].474

Epidemic models can thus help us studying seizure propagation processes. Of the large family of such models,475

we have selected the SI model as it captures the basic nature of epidemic spreading processes, including seizure476

propagation [51]. It only considers one mechanism: the propagation of an infectious process (or a seizure)477

from one region to another. Consequently, there is only one free parameter in the model – the probability478

that the infection is transmitted. This comes at the cost of not allowing for region deactivation: the model479

can only describe the initial steps of seizure propagation, when the activity starts to spread out. More detailed480

propagation models – such as the Susceptible-Infected-Susceptible (SIS) or Susceptible-Infected-Recovered (SIR)481

models – do include deactivation mechanisms, but in doing so extra parameters are introduced that would need482

to be fine tuned or assumed upon. Moreover, the early propagation-dominated phase of the SIR model is highly483

similar to the SI model, and this is the regime of interest here.484

As the backbone for seizure propagation in the model, we used the broad-band AEC-MEG connectivity485

network as a proxy for the structural brain network (see figure 1). By not correcting for the effect of volume486

conduction/field spread, short-range connections are present in the network [76–79], yet it also captures long-487

range connections that might be difficult to capture with DTI-based tractography. We validated the use of AEC-488

MEG networks as surrogate for structural connectivity by comparing them with the structural connectivity model489

of the exponential-distance rule (EDR), and we found a high correlation between the two network descriptions.490

Moreover, the AEC-MEG network is a good indicator of how activity spreads on the network and, as we have491

shown, it suffices to reproduce the SEEG seizure propagation patterns when used in combination with the SI492

model.493
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4.2 Reproduction of seizure propagation patterns494

In many patients, seizures follow stereotypical activation patterns. In this study we selected 10 patients who495

showed clear patterns on the SEEG recordings (see figure 2), and compared seizure propagation in the model496

with those clinically observed patterns, as depicted in figure 4. Despite its simplicity, we found that the model497

reproduces the main characteristics of the individual seizure propagation patterns in 9/10 patients when the498

resection area was considered as the seed (see figures 6a and 7a,b). Moreover, by using the possible seizure onset499

zone, as indicated by the SEEG recordings, as the seed for epidemic spreading, we showed that the model is500

sensitive to different definitions of the seed, and that alternative definitions can improve on the reproduction of501

the clinical patterns (see figures 6b and 7c,d). We also found that patient specific connectivity reproduces seizure502

propagation better than fully connected networks, and marginally (although not significantly) better than the503

average connectivity network (see figure 7). This result is in line with previous studies [36, 41] in which possible504

benefits of using patient-specific connectivity were suggested, but could not be corroborated by a significant505

difference in the model. Likely, larger data sets would be necessary to unravel how the models benefit from506

considering patient-specific connectivity.507

The density of connections of the network was set for each patient to fit the SEEG seizure propagation508

pattern. Higher density levels imply a more extended or homogeneous propagation pattern, whereas smaller ones509

are associated with a more well-defined propagation. Then, the SI propagation rate β was adjusted accordingly510

for each patient for the subsequent virtual resection analysis.511

The model parameters were fitted to the patient’s SEEG data, hence the current definition of the model512

relies on the use of SEEG recordings to infer the patient-specific seizure-propagation patterns and fit the model513

free parameters. However, these are not always part of standard clinical practice, as they are highly invasive for514

the patient and not always needed during pre-surgical planning. In order to show the feasibility of applying the515

model to patients without such recordings, we have shown in figure 6c that the average optimal model parameters516

can be used as an approximate solution. The propagation of seizures typically makes use of existing pathways,517

many of which are not patient-specific and can be recovered by the average model parameters. In the current518

setting, considering the overall best threshold for the connectivity matrix, instead of the individual one, led to519

less that a 15% decrease in correlation between the modeled and clinical seizure-propagation patterns. Within520

this configuration, the model is still personalized, as it is still fitted specifically for each patient via the patient’s521

MEG based connectivity matrix and seed for the SI propagation dynamics. Moreover, if a larger data-base is522

constructed, the patients could be grouped by epilepsy type and different optimal type-specific thresholds could523

be defined.524

For seizure-free (SF) patients the resection area is, by definition, a better representation of the epileptogenic525

zone than for non-seizure-free ones (NSF). Thus, one might expect that modelled epidemics spreading from the526

resection area might also reproduce the clinically observed seizure propagation patterns better for SF patients527

than for NSF ones. In order to test this hypothesis, we compared the correlations between the modelled and the528

clinical propagation patterns for SF and NSF patients. We found no significant differences for any of the cases529

considered (i.e. using either the resection area or the SEEG-based SOZ as seed). The limited spatio-temporal530

resolution of the clinical propagation profile might be partially accountable for this result. The small group size531

(10 patients, only 3 of whom were NSF) prevents any further interpretations of this result. It is still worth532

noting, however, that in the current setting all patients had a big improvement in the frequency and severity533

of the seizures [2, 59], so the resection area provided a reasonable approximation for the EZ, even for the NSF534

patients.535

4.3 Modelling Resections536

The effect of different resections on seizure propagation can be studied with the model by implementing virtual537

resections (see figure 5). One can then search for optimal resections that minimize seizure propagation for a538

given resection size. This can be used to aid epilepsy surgery by either finding resections that are smaller than539

the standard clinical approach, but have the same or almost the same effect [41], to find alternative resections540

that avoid specific regions [40], such as eloquent cortex, or to propose alternative resections, including regions541

outside the hypothesized SOZ, that might lead to a better outcome for NSF patients.542

The problem of optimization of virtual resections is highly computationally demanding. We found that a543

method that combines topological – using a surrogate structural measure [57, 58] – and dynamical properties544

can find optimal resections on the network. The use of this surrogate measure allows for a fast exploration of the545

space of possible resections, which is followed by a slower analysis using the SI dynamics to fine-tune the solution546

and measure the actual decrease in seizure propagation. In future studies exact results of the SI propagation on547

a network could also be implemented to avoid the need for random search methods [82, 95], taking advantage of548
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the mathematical tractability of the SI model.549

The effect of a resection in the model was measured as the decrease in propagation at a given time t0. That550

is, we measured the slowing down of seizure propagation due to the resection. In the model, a complete stop551

of propagation can only be achieved with – and is always achieved by – the complete disconnection of the seed552

from the rest of the network (this may not imply complete seed removal, in some cases removal of the nodes553

connecting the seed to the rest of the network might be enough and more efficient). This is because in the SI554

model activity always spreads to every connected region, eventually, regardless of any other network or model555

parameter. However, this model is only an approximation of actual seizure propagation, which is assumed to556

hold only for small times in which seizure dynamics are dominated by the activity propagation processes. After557

that, deactivation mechanisms kick in and the epileptiform activity eventually dies out. Within this paradigm,558

a sufficient decrease in seizure propagation at a given (early) time t0 would be enough to indicate an effective559

resection (that is likely to lead to seizure freedom); here this threshold was set to 90% of the original infection560

rate at time t0. Thus, we defined the optimal resection for each patient as the smallest resection leading to at561

least 90% decrease in seizure propagation. We found in the model that this optimal resection was smaller than562

the actual resection area for 7 out of 10 patients. Moreover, for four patients we found that it was possible to stop563

seizure propagation at the fixed time t0 with a resection smaller than the resection area. We found that cases564

with a larger or more densely connected epileptogenic region (i.e. a larger seed for the SI dynamics) required a565

larger portion of the seed to be removed to consistently reduce seizure propagation.566

These findings highlight the need to devise patient-specific models to aid epilepsy surgery planning, so that567

optimized individualized resections with minimal side-effects can be found. In this study we allowed the search568

algorithm to consider nodes outside the resection area as targets for the virtual resections. We found that, for569

one patient, the optimal 90% resection included one node outside the RA, and similarly for another patient the570

100% resection also included one node outside the resection area. Thus, individualized models could in some571

cases suggest alternative resections outside of the suspected epileptogenic zone that might be more beneficial572

than standard surgery.573

The 90% threshold for the reduction in seizure propagation was set ad-hoc and was equal for all patients, which574

might not be realistic. Future studies could include a patient-specific estimation of the propagation threshold by575

analyzing the individual intracranial EEG recordings: often epileptiform activity appears in a confined region576

but does not propagate to the rest of the network. Information about the size of this region could be used to577

estimate the threshold for which a reduction in seizure propagation in the model is considered sufficient, that578

is, for which the modelled activity remains within this local region. Alternatively, de-activation mechanisms579

could be introduced in the dynamical model, such as in the SIR model [41]. By setting the model initially in580

the super-critical regime – in which seizures have a non-zero probability of propagating, the optimal resection581

would be the one that takes the model to the subcritical regime with the minimum resection size. However, the582

parameters of the model – namely the propagation and de-activation probabilities – would strongly affect this583

result: if the system is initially far into the super-critical regime, a larger resection will be necessary compared to584

when it is close to the critical transition. In fact, the SI model as it was used here corresponds to the highly-super585

critical case in which seizures always spread. Thus, in order to avoid more assumptions that would hinder the586

interpretation of the outcomes of such a model, the SIR parameters would need to be tuned with clinical data,587

using for instance high-resolution spatio-temporal seizure-propagation patterns [36, 44, 96].588

4.3.1 Alternative Resections for NSF patients589

Another implication of the model definition is the fact that complete removal or isolation of the seed always leads590

to complete stop of seizure propagation, because seizures, in the model, only generate within the seed. Within591

the current formulation of the model, the seed is defined ad-hoc from the clinical data, either according to the592

resection area (RA seed) or the pre-surgical clinical information (SOZ seed). This implies that the resection593

model cannot distinguish situations where the selected seed is not a good representation of the EZ, such as is594

the case for NSF patients, and suggest a better resection. The first part of the model, i.e. the reproduction of595

seizure propagation patterns, could be of aid: the plausibility of different seeds can be judged from the maximum596

correlation that they yield between the modelled seizure patterns and the clinical SEEG patterns. Thus, optimal597

seed definitions that maximally reproduce the observed seizure propagation patterns could be suggested. This598

hypothesis implies that a higher correlation should be found for SF than for NSF patients when considering599

the resection area as the seed, which we were not able to validate in this study due to the small group size.600

Future studies should tackle this issue with larger patient groups and possibly more detailed spatio-temporal601

seizure propagation patterns, to increase the model resolution. Moreover, this would also validate whether the602

model can provide independent information prospectively – that is, prior to surgery – and suggest optimal seed603

definitions.604
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4.4 Strengths605

The main strength of our approach is the simplicity of the model considered. Epidemic spreading models do606

not intent to capture the details of the underlying biological basis of seizure generation and propagation, only607

the stereotypical patterns of seizure propagation [85]. The simplicity of the model not only allows for faster608

calculations and fewer free parameters, but it also comes with a large body of theoretical and computational609

studies that can be used to interpret the results and design the study [51].610

We integrated data from different modalities that are commonly measured in clinical practice: MEG and611

SEEG recordings, and the location of the resection area. The use of MEG networks as a proxy for structural612

networks avoids the computation of structural DTI networks, which are not part of standard clinical care and613

also time-consuming, limiting the flexibility with which the choice of atlas can be changed. Using AEC-MEG614

networks to define the backbone for the dynamical model allows for more versatility, as well as the ability to use615

our approach in patients for whom DTI data are not available, reducing the burden associated with the use of616

computational models in clinical practice.617

The model was fitted with patient-specific data and optimized independently for each patient. The varying618

results for different patients, both for the reproduction of seizure propagation patterns and the analysis of619

alternative resections, highlight the need for using personalized models of seizure propagation [36, 41, 96].620

Moreover, the model could be easily extended to include more clinical presurgical information, such as the621

existence of MRI or MEG abnormalities. Similarly, the model could be used prospectively by using alternative622

definitions of the seed, that do not depend on the resection area, as we have already shown here by using seeds623

based on the SOZ as determined from SEEG (see figures 6 and 7).624

4.5 Limitations625

The main limitations of the current study are the limited number of patients considered and the low-resolution of626

the clinical seizure propagation patterns. The small cohort prevents further validation of the model to distinguish627

between SF and NSF patients. Meanwhile, the low resolution implies that few parameters of the dynamical628

model can be fit to the data. Future studies should consider larger patient cohorts in order to validate the model629

performance. In this study a small cohort was used as proof-of-concept, since both the manual processing of the630

data and the computational analyses are highly temporally expensive.631

Another important limitation is that the seed of seizure propagation was assumed from the data – being632

either the resection area or the SOZ as estimated from the SEEG recordings. This, in conjunction with the fact633

that complete removal of the seed always leads to a stop of seizure propagation, implies that the model cannot634

suggest better resections for NSF patients, and it also limits its prospective use. To be of more clinical use, the635

model should be able to suggest the seed of seizure propagation. This could be done by finding the set of nodes636

that maximally reproduces the clinical seizure propagation patterns. However, in order to do this realistically637

and in a systematic manner, more detailed spatio-temporal patterns of seizure propagation are needed for each638

patient. These could be obtained from the SEEG recordings directly [36, 44, 96].639

Another limitation is the nature of the SI model: it reproduces adequately the initial steps of seizure prop-640

agation, but the lack of a de-activation mechanism means that it cannot fit the whole seizure. Including a641

mechanism for de-activation would circumvent this issue, provided that the extra parameters can be adequately642

fitted. Similarly, in this study we have used MEG-AEC networks as surrogate for structural connectivity, instead643

of actual structural networks as those derived with DTI.644

The use of SEEG data to fit the model can be another limitation for its clinical use, as SEEG recordings645

are highly invasive and not always part of the presurgical evaluation. However, we have shown that the model646

parameters can be extrapolated from the overall best fit (see figure 6c) and used for patients without SEEG.647

In the current setting, this led to a less than 15% decrease in the reproducibility of the seizure patterns, as648

measured by the correlation between the SI and SEEG propagation patterns. Information from other modalities649

could also potentially be included, such as epileptiform abnormalities found in MEG imaging. These can be used650

to set the probability for a region being a seed region.651

An inherent limitation of all studies analyzing the functional effect of different resections is modeling the652

resection itself. Here we have employed the commonly used virtual resection technique, such that the weights653

of all resected links are set to 0 [37, 86, 97, 98]. This does not account for the generalized effect that a local654

resection can have on the network [99]. It does not consider any plasticity mechanisms either [100, 101], which655

are known to occur following a lesion in the brain [11, 102] – and in particular following a resection [81, 103–105].656

These appear as a consequence of the network disruption, and can have widespread effects. They will play a657

significant role in the cognitive functioning following the resection, and can also affect the long-term outcome of658

the surgery. These effects should be included in future studies for a more comprehensive modelling of epilepsy659
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surgery.660

In this study we decided to identify the resection areas by appyling an affine transformation of the post-661

surgical MRI to the pre-surgical MRI, as it is common practice in computational studies of epilepsy surgery662

[27, 30, 35, 36, 41, 44, 81]. Recent studies using multi-modal imaging or intra-surgical imaging have found a663

better characterization of resection areas using more general transformations such as elastic models [106–108].664

Potential differences arise in particular for large resections, but are unlikely to be significant at an atlas-level665

resolution, and visual inspection in our data-set identified only small variations at the sub-ROI level. Future666

studies should approach this perspective and characterize the actual significance of brain tissue adaptation after667

the surgery and the convenience of considering elastic coregistrations to characterize the resection cavities.668

A final limitation of the study, and of similar studies using the virtual resection technique, is the difficulty669

of the validation of the results, as the different resections cannot be tested clinically. Typically, virtual resection670

models are validated by comparing the overlap between the suspected EZ as generated by the model with the671

resection area for both SF and NSF patients, where a valid model should provide a good match for SF patients672

and a poor match for NSF patients [32, 35, 37, 38, 42]. Alternatively, the propagation pathways simulated by673

the model are compared with those recorded with SEEG [36, 96]. We have undertaken the later approach in this674

work to tune the model parameters and for validation, and the first approach was used for validation, although675

the small group sizes do not allow us to draw strong conclusions in this proof-of-principle study. Moreover, using676

surgical outcome to validate the model is only a first step, as the ultimate goal is to improve surgical outcome,677

i.e. to perform the analysis proposed in this work before surgery has taken place.678

4.6 Outlook679

In recent years there have been increasing efforts to develop individualized computer models to study brain680

disorders. In particular, in the case of epilepsy surgery, it is expected that such models might help improve681

surgery outcome and decrease the cognitive side-effects associated with epilepsy surgery, by proposing targeted,682

individualized resections for each patient. Currently, the greatest challenge remains in the validation of the683

models, as the ground truth is inherently missing and the actual effect of a resection can only be known several684

months – or years – after the surgery has taken place. Thus, extensive retrospective validation of the models is685

necessary before prospective (or even pseudo-prospective) studies can take place. Here, the seizure propagation686

model ought to be validated in future studies by increasing the number of included patients, and the resolution687

of the SEEG seizure propagation pattern should be increased in order to increase the sensitivity to the model688

parameters. Then, if a better relation between the model and the clinical data can be found for SF than for NSF689

patients, as we have hypothesized, the model could be used to find the seed regions that maximally reproduce690

the seizure patterns. Similarly, future studies could explicitly include forbidden areas that cannot be removed691

during the surgery, such as the eloquent cortex, or avoid surgeries that are not possible in clinical practice.692

5 Conclusions693

Patient-specific epidemic models can capture the fundamental aspects of seizure propagation as observed clini-694

cally with invasive SEEG recordings. The models, optimized specifically for each patient, can then be used to test695

the effect that different resection strategies may have on seizure propagation in silico. Our results highlight the696

need for individualized computer models to aid epilepsy surgery planning by defining smaller targeted resections697

with potentially fewer side-effects and better outcome than standard surgery.698
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