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Abstract13

Background14

Epilepsy surgery is the treatment of choice for drug-resistant epilepsy patients. However, seizure-freedom is15

currently achieved in only 2/3 of the patients after surgery. In this study we have developed an individualized16

computational model based on MEG brain networks to explore seizure propagation and the efficacy of different17

virtual resections. Eventually, the goal is to obtain individualized models to optimize resection strategy and18

outcome.19

Methods20

We have modelled seizure propagation as an epidemic process using the susceptible-infected (SI) model on21

individual brain networks derived from presurgical MEG. We included 10 patients who had received epilepsy22

surgery and for whom the surgery outcome at least one year after surgery was known. The model parameters23

were tuned in order to reproduce the patient-specific seizure propagation patterns as recorded with invasive24

EEG. We defined a personalized search algorithm that combined structural and dynamical information to find25

resections that maximally decreased seizure propagation for a given resection size. The optimal resection for26

each patient was defined as the smallest resection leading to at least a 90% reduction in seizure propagation.27

Results28

The individualized model reproduced the basic aspects of seizure propagation for 9 out of 10 patients when29

using the resection area as the origin of epidemic spreading, and for 10 out of 10 patients with an alternative30

definition of the seed region. We found that, for 7 patients, the optimal resection was smaller than the resection31

area, and for 4 patients we also found that a resection smaller than the resection area could lead to a 100%32

decrease in propagation. Moreover, for two cases these alternative resections included nodes outside the resection33

area.34

Conclusion35

Epidemic spreading models fitted with patient specific data can capture the fundamental aspects of clinically36

observed seizure propagation, and can be used to test virtual resections in silico. Combined with optimization37

algorithms, smaller or alternative resection strategies, that are individually targeted for each patient, can be38

determined with the ultimate goal to improve surgery outcome. MEG-based networks can provide a good39

approximation of structural connectivity for seizure spreading computational models, and facilitate their clinical40

use.41
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1 Introduction42

Epilepsy is one of the most common neurological disorders, affecting between 4 and 10 per 1000 people worldwide43

[1]. There is not one single cause of epilepsy: it often occurs as an associated symptom of an underlying44

disease, but many other times it is produced by unknown causes [2]. This complicates the understanding of45

seizure dynamics, and to this day the microscopic mechanisms that lead to seizure generation and propagation46

are not fully understood [3]. It is generally assumed that a shift from normal neuronal activity to excessive47

synchronization [4] occurs due to decreased inhibition [5], but the actual nature of this transition is not clear.48

Epilepsy is initially treated by anti-epileptic drugs (AEDs), but this approach is not effective for roughly49

1 out of 3 people [6]. For these drug-resistant patients, epilepsy surgery is an optional treatment if a focal50

origin of the seizures can be found. The surgery then aims to remove or disconnect the brain regions thought51

to be involved in seizure generation. Currently, seizure freedom is achieved in up to 2 out of 3 patients who52

undergo epilepsy surgery, although surgery outcome varies greatly depending on epilepsy type [7]. Even when53

surgery is not completely successful, the majority of patients will still experience a reduction in seizure frequency54

or intensity after surgery. However, side-effects and cognitive complaints can also occur after surgery. These55

depend on the brain areas resected, but are difficult to predict accurately [8].56

Traditionally, efforts to improve epilepsy surgery have aimed to better characterize the epileptogenic zone57

(EZ, defined as the minimal brain area or areas that need to be removed or disconnected to achieve seizure58

freedom [9]; by definition, this can only be confirmed after surgery, and prior to it only a hypothesis can be59

made). However, in recent years – and in line with the increasingly common view of the brain as a complex60

network – epilepsy is seen as a network disorder. Attention is thus shifting towards the definition of epileptogenic61

networks that can capture more details of seizure dynamics and the distribution of epileptiform activity [10–12].62

An increasing number of findings support this perspective: topological properties of epileptogenic brain networks63

have been found to deviate from those seen in healthy controls [13, 14], and abnormal patterns of functional64

connectivity emerge [15–17] (although the results of different imaging modalities are sometimes contradictory65

[15–20]). A common finding in pathological brain networks is the association of disease with network hubs [21,66

22]. In the case of epilepsy, hubs may facilitate the propagation of epileptiform activity to the rest of the brain67

[23–25]. Moreover, several studies have pointed out the existence of pathological hubs: abnormal, hyperconnected68

regions in the vicinity of the epileptic focus, which may facilitate seizure propagation [25–27].69

Importantly, the network perspective of epilepsy implies that the effect of a resection cannot be predicted70

directly from the location of the removed region alone [28]: local resections can have widespread effects, but at71

the same time might not prevent the epileptogenic network from forming a new EZ eventually [29]. Computer72

models are then necessary to help predict the effect of a given resection [30]. Integrating patient specific data of73

different modalities, computer models allow us to test different resections in silico – i.e. using virtual resections –74

together with different markers of the EZ. Within this framework, Hebbink et al. [31] showed that the resection of75

the pathological network node is not necessarily the best approach to alleviate seizures, whereas Lopes et al. [32]76

found that the fraction of resected rich-club nodes correlated with surgery outcome. Going beyond topological77

network analysis, the simulation of ictal activity on top of brain networks can aid the identification of the EZ78

and prediction of surgery outcome, as well as predict possible side-effects. Such computational models can be79

used to identify epileptogenic areas [33, 34] or analyze different resection strategies [26, 32, 35–38], such that80

patient-specific resection strategies, that may lead to a better outcome or fewer side-effects than the standard81

surgery, can be tested [33, 39–41]. Validation of the models is usually attempted by looking for differences in the82

model predictions between seizure free and non-seizure free patients [42, 43] or by correlating seizure propagation83

on the model with the empirical data [44].84

A basic consideration in the model definition is thus the nature of the underlying network. The temporal85

and spatial resolution of the resulting network-based model, and the interpretation of the connections between86

regions, will depend on the modality that was used to define the network structure. Studies on epileptogenic87

networks have considered both functional [32, 35, 37, 42, 43, 45] and structural [33, 36, 40, 41] networks, as they88

are both affected in patients with epilepsy [40–43]. However, functional networks can capture abnormalities in89

brain activity even in the absence of structural abnormalities [46]. Functional networks based on intracranial90

recordings [32, 35, 37, 42, 43] usually include ictal data and allow for highly precise characterization of some brain91

areas, however spatial sampling is sparse and biased due to an a priori hypothesis of the EZ, which may lead to92

bias in the analysis. Moreover, these invasive recordings are not always part of the presurgical evaluation. Non-93

invasive methods, such as Electro- and Magneto-Encephalography (EEG/MEG) have no risks of complications94

[47]. MEG is less affected by the skull and other tissue in the head, is reference-free and has higher spatial95

resolution than clinical scalp EEG [48]. This allows for a more accurate estimation of functional interactions96

between brain regions, and thus a more accurate reconstruction of the functional networks. MEG interictal97

resting-state functional brain networks have been used previously to identify the EZ [11, 27].98
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In general, most of the studies cited above made use of highly detailed non-linear models, such as neural mass99

models or theta models [49]. These models depend on several parameters that need to be adjusted beforehand,100

which complicates the optimization of the model and makes it difficult to obtain conclusions that are gener-101

alizable. As it is usually the case, an interplay exists between the generalizability and accuracy of the model,102

such that optimizing the predictive power of a model often means reducing the number of tunable parameters103

[50]. Thus, simpler models with few parameters might prove more reproducible, especially if the behavior of104

the model is understood mathematically. In this regard, one particular framework of relative mathematical105

simplicity that may capture the fundamental aspects of seizure propagation is that of epidemic spreading models106

[51]. These models simulate the propagation of an agent from some given location to other connected areas, a107

basic phenomenon appearing in a multitude of systems. Such models have been used, for instance, to study the108

spreading of pathological proteins on brain networks [52], or the relation between brain structure and function109

[53].110

We propose that epidemic models can also provide a good representation of the initial steps of seizure111

propagation, during which the anomalous highly synchronized ictal activity propagates from the EZ to other112

regions. Moreover, as it is the case in epilepsy surgery, studies on epidemic models often try to find ways to113

stop or limit the propagation of the epidemics. Thus, epidemic models could also aid the planning of epilepsy114

surgery. For instance, the fundamental role of hubs in propagation is a well-known result of epidemic spreading115

[54], and targeting hub regions is often the most efficient way to obtain global immunization [55, 56]. Data of116

outbreak patterns can also be used retroactively to find the location of the origin of an epidemic [57, 58]. Within117

this framework, in a previous study [41] we modelled seizure propagation as an epidemic spreading process and,118

using the eigenvector centrality as a surrogate measure, found that the size of the resection area could be largely119

reduced with only a small decrease in the efficacy of the virtual surgery.120

Here we defined an individualized seizure propagation model by making use of the Susceptible-Infectious (SI)121

model of epidemic spreading on top of a global brain network, for a group of 10 epilepsy patients who underwent122

epilepsy surgery, and for whom the surgical outcome at least one year after surgery was known. The network was123

based on the patient-specific MEG connectivity. The model parameters were tuned using information about the124

patient-specific seizure propagation patterns in invasive EEG recordings and the location of the resection area.125

First, we showed that, despite its simplicity, the model provides a good approximation to clinically observed126

seizure propagation patterns, and we fit the free parameters of the model to optimize the reproduction of the127

individual seizures. Secondly, we used the individualized model to test alternative resection strategies and,128

making use of an optimization algorithm, we found optimal – in terms of reduction of seizure propagation –129

personalized resections.130

2 Methods131

2.1 Patient group132

We retrospectively analyzed 10 patients (5 females) with refractory epilepsy (Table 1). All patients underwent133

epilepsy surgery at the Amsterdam University Medical Center, location VUmc, between 2016 and 2019. All134

patients had received a magnetoencephalography (MEG) recording, had undergone a SEEG (stereo-electro-135

encephalography) study, and underwent pre- and post-surgical MR imaging. All patients gave written informed136

consent and the study was performed in accordance with the Declaration of Helsinki and approved by the VUmc137

Medical Ethics Committee.138

The patient group was heterogeneous with temporal and extratemporal resection locations and different139

etiology. Surgical outcome was classified according to the Engel classification at least one year after the operation140

[59]. Patients with Engel class 1A were labelled as seizure free (SF), and patients with any other class were141

labelled as non seizure free (NSF). 3 patients were deemed NSF.142

2.2 Individualized Brain Networks143

The individualized computer model was based on the patient-specific brain network (see figure 1) reconstructed144

in the Brainnetome Atlas (BNA) from MEG scans, as detailed below. We have considered the structural network145

as the substrate for the propagation of ictal activity, in agreement with previous studies [41]. However, true146

structural networks (e.g. DTI - Diffusion Tensor Imaging networks) cannot be derived from the scans that147

the patients get as part of their routine pre-surgical evaluation, and would thus require an extra imaging step,148

increasing the personal and economic burden to apply the model clinically. On the contrary, MEG scans are,149

when available, part of the routine pre-surgical evaluation, and thus using MEG data to derive a surrogate150
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for structural networks reduces the burden and increases the applicability of the model. This can be done151

by considering a metric such as the uncorrected Amplitude Envelope Correlation (AEC). By not correcting152

for the effects of volume conduction, this metric closely resembles the underlying brain anatomy and therefore153

the structural connectivity. In order to validate the use of AEC-MEG networks as surrogate for structural154

connectivity, we have compared them with a phenomenological model for structural connectivity the exponential155

distance rule (EDR). This rule states that the weights of the connections between pairs of regions in the brain156

decay exponentially with the distance between them [60–62], and has been repeatedly validated in human DTI157

data [63–65]. In order to adapt this rule for the resolution of the BNA atlas (much lower than those used in158

animal and human-DTI studies, which defined brain parcelations of millions of ROIs, instead of the 246 of the159

BNA atlas), we computed the correlation between the network models for an array of decay-exponents, and160

found the one yielding the best fit for the AEC-MEG networks.161

Pre-operative Magnetic resonance imaging (MRI) scans were used for co-registration with the MEG data.162

MRI T1 scans were acquired on a 3T whole-body MR scanner (Discovery MR750, GE Healthcare, Milwaukee,163

Wisconsin, USA) using an eight-channel phased-array head coil. Anatomical 3D T1-weighted images were164

obtained with a fast spoiled gradient-recalled echo sequence. During reconstruction, images were interpolated165

to 1mm isotropic resolution.166

2.2.1 MEG acquisition167

MEG recordings were obtained during routine clinical practice using a whole-head MEG system (Elekta Neu-168

romag Oy, Helsinki, Finalnd) with 306 channels consisting on 102 magnetometers and 204 gradiometers. The169

patients were in supine position inside a magnetically shielded room (Vacummshmelze GmbH, Hanau, Germany).170

Typically, three data-sets of 10 to 15 minutes each containing eyes-closed resting-state recordings were acquired171

and used in the presurgical evaluation for the identification and localization of interictal epileptiform activity.172

Paradigms for the localization of eloquent cortex, such as voluntary movements and somatosensory stimulation173

[66], as well as a hyperventilation paradigm to provoke interictal epileptiform discharges, were also recorded but174

not analysed in this study. The data were sampled at 1250 Hz, and filtered with an anti-aliasing filter at 410 Hz175

and a high-pass filter of 0.1 Hz. The head’s position relative to the MEG sensors was determined using the signals176

from four or five head-localization coils that were recorded continuously. The positions of the head-localization177

coils and the outline of the scalp (roughly 500 points) were measured with a 3D digitizer (Fastrak, Polhemus,178

Colchester, VT, USA), and were later used for co-registration with the anatomical MRI.179

The temporal extension of Signal Space Separation (tSSS) [67, 68] was used to remove artifacts using Maxfilter180

software (Elekta Neuromag, Oy; version 2.1). The points on the scalp surface were used for co-registration with181

the anatomical MRI of the patient through surface-matching software. A single sphere was fitted to the outline182

of the scalp and used as a volume conductor model for the beamforming approach. For a detailed description183

and parameter settings see [66].184

2.2.2 MEG processing: Atlas-based Beamforming185

Neuronal activity was reconstructed using an atlas-based beamforming approach, modified from [69], in which186

the time-series of neuronal activation of the centroids of the ROIs were reconstructed [70]. We considered the187

246 ROIs in the BNA atlas [71], including 36 subcortical ROIs, whose centroids were inversely transformed to188

the co-registered MRI of the patient. Then, a scalar beamformer (Elekta Neuromag Oy; beamformer; version189

2.2.10) was applied to reconstruct each centroid’s time-series. The beamformer weights were calculated for each190

centroid separately to form a spatial filter so as to maximally let pass signals that originate from the centroid191

of interest and to attenuate all other signals. The weights were based on the lead fields (using the spherical192

head model and an equivalent current dipole as source model), the data covariance and noise covariance. The193

broadband (0.5� 48.0 Hz) data covariance was based on the entire recording (on average 799.23 seconds of data194

(range: 309.50 - 908.67) were used). A unity matrix was used as noise covariance when estimating the optimum195

source orientation for the beamformer weights [72]. The broadband data were projected through the normalised196

beamformer weights [73] in order to obtain time-series (virtual electrodes, VE) for each centroid [70].197

2.2.3 Brain Networks198

The time-series for each VE were visually inspected for epileptiform activity and artifacts. On average, 53.1199

(range: 19� 60) interictal and artefact-free epochs of 16384 samples were selected for each patient. The epochs200

were further analyzed in Brainwave (version 0.9.151.5 [75]) and were down-sampled to 312 Hz, both in the201

broadband (0.5 - 48 Hz) and in the alpha-band (8 - 13 Hz).202

5



Figure 1: Individual Brain Networks. a) Weighted (and thresholded) resting-state broadband-MEG connectiv-
ity matrix for patient 4, for � = 0:15. Each entry corresponds to a BNA region, and the regions have been re-ordered
to group regions in the same hemisphere. In this representation, ROIs 1-105 correspond to the left cortical regions,
ROIs 106-210 to the right cortical regions and ROIs 211-246 to the subcortical regions (in alternating hemisphere
order). The strength of each connection is indicated by the colorcode. In red we show the connections from and
to the resection area (RA). b) Distribution of average distances to the RA according to eq.(S2) for patient 4, in
dimensionless units. The points mark the centroids of the BNA ROIs, and the color scale indicates the effective
distance of the ROI to the resection area (RA), which appears as black dots. c) Zoom-in of the adjacency matrix:
RA and surrounding nodes. d) Illustrative representation of the RA (big black circles) and all the links connecting
it with the rest of the network. Figures with brain representations have been obtained with the BrainNet Viewer
[74].
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