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By a thorough performance comparison, we compare the recently proposed, operator-based Linear Clus-
tering Process on a network with classical, existing clustering algorithms. The Linear Clustering Process
produces clusters or partitions based on the eigenstructure of a linear operator on a graph that replaces
nodes to ”more natural” positions by attractive and repulsive forces. Synthetic benchmarks, along with
real-world networks possessing or lacking a known community structure, are considered. Our compara-
tive analysis demonstrates that our Linear Clustering Process generates superior partitions compared to
the algorithms assessed in most instances, while of comparable computational complexity with the sim-
plest existing clustering algorithms.
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1. Introduction

Networks[2] [21] pervade many disciplines, encompassing a broad range from social and information
networks to biological and transportation systems. In these complex networks, the interaction and con-
nection among constituting systems (nodes) is crucial for a comprehensive understanding of the system’s
overall behavior. One of the most prominent and challenging tasks in network analysis is the identifi-
cation of communities or clusters, representing groups of nodes with the majority of links connecting
nodes within the same cluster, while only a few links join nodes from different clusters[12]. This task,
known as community detection or network clustering or graph partitioning, has been the focus of a
substantial body of research, primarily due to its profound implications in various fields.

A reliable community detection algorithm should be able to identify “good” partitions[12]. Conse-
quently, the implementation of a dependable quantitative criterion can be instrumental, and at times even
indispensable, in distinguishing between “good” and “bad” clusterings and enhancing the algorithm’s
capacity to produce high-quality partitions. Newman and Girvan pioneered a quality function known
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as modularity[23], which subsequently inspired a series of optimization algorithms[22]. Building on
this concept, Blondel et al. introduced the Louvain method[4], a heuristic approach based on modu-
larity optimization. This method was lauded for its computational efficiency and was considered one
of the best-performing algorithms of its time[18]. More recently, the Leiden method[27] has emerged
as an enhancement to the Louvain method, designed to address some of its known limitations[27] and
thereby yield higher-quality community partitions. Shang et al. further contributed to this evolving field
by proposing the Local Dominance algorithm[26], which aims to unearth the hidden hierarchy within
networks by harnessing local information.

Jokić and Van Mieghem [16] proposed the Linear Clustering Process (LCP) on networks for commu-
nity detection, a novel approach based on properties of a linear operator, specified by a real symmetric
matrix, that acts upon a graph. The key idea is similar to Hermitian operators in quantum mechan-
ics, whose eigenstructure relates to the steady-state energy states of a set of particles under the action
of the operator. The LCP algorithm involves clustering by moving nodes in a one-dimensional space
via attractive and repulsive forces. LCP was shown in [16] to outperform existing algorithms, while
maintaining similar computational complexity in a limited number of cases. This paper thoroughly
extends the evaluation of LCP’s performance. We utilize the Stochastic Block Model (SBM)[14] and
the Lancichinetti-Fortunato-Radicchi (LFR) benchmark[19], which includes both random networks and
power-law networks. When assessing community partitions, we employ the Element-Centric Similar-
ity (ECS)[13] measure to provide a fairer evaluation, given the inherent bias of Normalised Mutual
Information (NMI)[8]. Furthermore, we also equip all spectral methods with the capability to gener-
ate community partitions using K-means clustering, thus ensuring a more comprehensive comparison.
Throughout rigorous testing conditions, the LCP consistently demonstrates its superior performance.
LCP excels in optimizing modularity and its ability to partition communities is particularly remarkable
when dealing with well-defined clusters.

In Section 2, we present the performance metrics employed in this study, including modularity, NMI
and ECS, as well as various synthetic benchmarks. Section 3 overviews our LCP. Section 4 showcases
a comparative analysis of the LCP’s performance against that of the Louvain, Leiden, Newman, Non-
backtracking, Eigengap, and Local Dominance algorithms. We conclude the paper with a summary of
our findings and their implications in the final section.

2. Network or graph clustering

2.1 Modularity

Newman and Girvan [23] introduced the concept of modularity to facilitate network partitioning. The
modularity measure is denoted as m and defined as follows

m =
1

2L
·

N

∑
i=1

N

∑
j=1

(
ai j −

di ·d j

2L

)
·1{iand j∈ same cluster}, (2.1)

where 1x is an indicator function that equals 1 if statement x is true, and 0 otherwise. Modularity m in
equation (2.1), quantifies the difference between the actual number of links between nodes belonging
to the same community and the expected number of such links in a randomly connected network. The
modularity value, m, approaching 0 indicates that the estimated partition is as good as a random one.
Conversely, a modularity value close to 1 suggests a clear partitioning of the network into distinct
clusters. Optimising modularity is NP-complete [5], and approximations have been proposed [29]. By
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defining the N ×N cluster matrix C as:

Ci j =

{
1 if nodes i and j belong to the same cluster
0 otherwise,

(2.2)

we can express the modularity (2.1) as a quadratic form:

m =
1

2L
·uT ·

(
A◦C− 1

2L
·
(
d ·dT )◦C

)
·u, (2.3)

where the symbol ◦ represents the Hadamard product [15]. The number of clusters in the network is
denoted as c and the c× 1 vector n =

[
n1 n2 . . . nc

]
, with ni representing the number of nodes in

cluster i, specifies the size of each cluster.

2.2 Normalised Mutual Information (NMI)

Danon et al. [8] introduced the normalised mutual information (NMI) metric as a means of comparing
partitions in network analysis. The metric relies on a confusion matrix, denoted as F , which represents
the correspondence between the original communities and the estimated clusters. The i j-th element Fi j
in the confusion matrix indicates the number of nodes belonging to both the true community i and the
estimated community j. The normalised mutual information metric, denoted as In(P0,Pe), between the
known partition P0 and the estimated partition Pe is defined in [8] as:

In(P0,Pe) =

−2
c0
∑

i=1

ce
∑
j=1

Fi j log
(

Fi jN
Fi.F. j

)
c0
∑

i=1
Fi. log

(
Fi.
N

)
+

ce
∑
j=1

F. j log
(

F. j
N

) , (2.4)

where c0 represents the number of known clusters, ce represents the number of estimated clusters, Fi.
denotes the sum of the i-th row in F , F. j denotes the sum of the j-th column and N represents the total
number of nodes in the network. The NMI metric takes a value of 1 when two partitions are identical,
and tends towards 0 when the partitions are independent. The NMI measure has been widely employed
in evaluating the performance of various clustering algorithms [12] and continues to be a valuable tool
in network analysis.

2.3 Element-centric Similarity (ECS)

Gates et al. [13] introduced the Element-centric Similarity (ECS) metric to tackle the biases inherent in
existing clustering comparison measures. The authors highlight that such biases are pervasive in popular
metrics. For instance, when comparing the similarity between two clusterings, one is typically fixed as
the ground truth while the number of clusters in the other is increased. As a consequence, the NMI value
rises, whereas the ECS value declines. This indicates that NMI exhibits a bias towards a greater number
of clusters, whereas ECS remains unbiased in this regard.

The process of ECS commences by computing the “personalized PageRank” or “random walk with
restart” pi j, incorporating all possible paths between elements to derive the equilibrium distribution for
a personalized diffusion process on the graph:

pi j = (αecs/
∣∣cβ

∣∣)+(1−δi j)(1−αecs))δβγ , (2.5)
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where δ is the Kronecker delta function, element vi is in cluster cγ , and element v j is in cluster cβ . And∣∣cβ

∣∣ denotes the cluster size of cβ . 1.0−αecs represents the restart probability, where αecs = 0.9.
With the personalized PageRank pi j, we can further calculate the element-wise similarity of an

element vi in two clusterings A and B,

Si(A ,B) = 1.0− 1
2αecs

N

∑
j=1

∣∣∣pA
i j − pB

i j

∣∣∣ . (2.6)

Finally, the ECS score S(A ,B) of two clusterings A and B is the average of Si(A ,B),

S(A ,B) =
1
N

N

∑
i=1

Si(A ,B). (2.7)

The closer the value of ECS is to 1, the more similar the two clusterings are, while the closer the value
of ECS is to 0, the more dissimilar the two clusterings are.

Furthermore, it is noteworthy that the complete version of ECS possesses the capability to assess
both overlapping clustering and hierarchical clustering. However, within the scope of this paper, all uti-
lized algorithms, benchmarks, and real-world networks exclusively pertain to classic community prob-
lem: where each node is singularly allocated to a lone community. As such, our reimplementation of
ECS focuses solely on this facet of its functionality.

2.4 Benchmarks

2.4.1 Stochastic Block Model (SBM) The clustering methods employed in this study were evaluated
using random graphs generated by the Stochastic Block Model (SBM), which was proposed by Holland
[14]. The SBM generates a random graph with a community structure, where the presence of a link
between two nodes depends on whether they belong to the same cluster or not and the probability of
the link varies accordingly. This study specifically focuses on the symmetric stochastic block model
(SSBM), which involves defining only two distinct probabilities for links. If two nodes belong to the
same cluster, they are connected by a link with a probability of pin. Otherwise, a direct link exists
between them with a probability of pout . Communities are formed when the link density within clusters
is greater than the inter-community link probability, i.e., when pin > pout . Additionally, the clusters are
constrained to have the same size, denoted by ni =

N
c , where i ∈ 1,2, . . . ,c. This constraint ensures that

the expected degree is equal for all nodes, regardless of their cluster membership. The expected degree
E[D], where D is the random variable of the degree:

E[D] =
bin +(c−1) ·bout

c
. (2.8)

In this study, we consider a sparse and assortative variant of the SSBM. The terms sparse and assortative
imply that the link probabilities, pin = bin

N and pout =
bout
N , are defined based on positive constants bin

and bout , which remain fixed as the network size N approaches infinity. Decelle et al. [9, 10] discovered
that when the difference between bin and bout surpasses a detectability threshold, represented by the
equation:

bin −bout > c ·
√

E[D], (2.9)

it becomes theoretically possible to accurately identify the cluster membership of nodes. Conversely,
if the difference between bin and bout violates the inequaliy in (2.9), the network’s community struc-
ture cannot be distinguished from randomness. This threshold inequality c

√
E[D] in (2.9) represents a

critical transition point between the undetectable and theoretically detectable regimes of the SSBM.



LINEAR CLUSTERING PROCESS ON NETWORKS:A COMPARATIVE STUDY 5 of 31

2.4.2 LFR benchmark Lancichinetti et al. [19] proposed the LFR benchmark as an alternative to
SSBM graphs, aiming to generate more realistic random graphs that incorporate inherent community
structures. Unlike SSBM graphs, where all nodes have the same expected degree, the authors argue
that real-world networks often exhibit heterogeneous degree distributions. Moreover, the tails of these
distributions are frequently characterized by power laws [20]. In contrast, the LFR benchmark takes
into account the observed properties of real-world networks, where community size distributions often
follow heavy-tailed distributions [24]. This benchmark produces graphs with the following characteris-
tics:

• Each node’s degree is sampled from a power law distribution with an exponent determined by the
input parameter γ;

• The size of each community is sampled from a power law distribution with an exponent deter-
mined by the input parameter βl f r;

• A fraction 1−µ of the links of each node are assigned as intra-community links.

In addition to the parameters mentioned above, the LFR benchmark requires inputs for the network size
N, the average degree dav, and the number of communities c.

3. Linear Clustering Process

Jokić and Van Mieghem[16] proposed a linear process of attraction and repulsion between adjacent
nodes of a graph, which can be utilised to identify partition.

In the graph G, every node i is allocated a position xi[k] on a linear axis, which corresponds to a
one-dimensional space at a specific, discrete point in time, denoted as k. LCP consists of two opposite
and simultaneous forces that change nodal position in time:

• Attraction: Adjacent nodes that have a lot of common neighbors are drawn towards each other
with a force that is proportional to the quantity of shared neighbors. In particular, the attractive
force between node i and its neighboring node j is proportional to α ·

(∣∣N j ∩Ni
∣∣+1

)
, where α

is the attraction strength and N j ∩Ni denotes the set of common neighbors of node i and node j;

• Repulsion: Adjacent nodes are repulsed with a force proportional to the number of neighbours
they do not share. In particular, the repulsive force between node i and its neighboring node j is
proportional to δ ·

(∣∣N j \Ni
∣∣−1

)
, where δ is the repulsive strength and N j \Ni denotes the set

of neighbors of node j that do not belong to node i, accounted for the direct link between node i
and node j, that is contained in N j \Ni. To obtain a symmetric repulsion force between node i
and node j, when these nodes are interchanged, we define the repulsion force to be proportional
to δ ·

(∣∣N j \Ni
∣∣+ ∣∣Ni \N j

∣∣−2
)
.

The governing equation at position xi[k] of node i at discrete time k is

xi[k+1] = xi[k]+ ∑
j∈Ni

(
α ·
(∣∣N j ∩Ni

∣∣+1
)

d jdi
−

1
2 ·δ ·

(∣∣N j \Ni
∣∣+ ∣∣Ni \N j

∣∣−2
)

d jdi

)
·
(

x j[k]− xi[k]
)

(3.1)
where di and d j denote the degree of node i and node j, respectively. The attractive force between two
adjacent nodes is always of higher strength than the repulsive force, preserving the system’s stability
but negatively influencing the steady-state. In [16, p. 5], we provide bounds on the attraction α and
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repulsion δ strength, respectively, to preserve the stability of the LCP process. The node-level governing
equation of LCP can be further transformed to the network level and rewritten to a matrix form. The
discrete time process (3.1) satisfies the following linear matrix difference equation, as derived in [16,
Theorem 1]

x[k+1] = (I +W −diag(W ·u)) · x[k], (3.2)

where the N×1 all-one vector is notated as u, the N×N identity matrix is denoted by I, while the N×N
topology-based matrix W is defined as

W = (α +δ )∆
−1 ·
(
A◦A2 +A

)
·∆−1 − 1

2
·δ
(
∆
−1 ·A+A ·∆−1) (3.3)

where ◦ denotes the Hadamard product. The eigenvalue decomposition of the N ×N governing matrix
W −diag(W ·u) can be written as

W −diag(W ·u) = Y diag(β )Y T (3.4)

where the N × 1 eigenvalue vector β = (β1,β2, · · · ,βN) with β1 ⩾ β2 ⩾ · · · ⩾ βN and Y is the N ×N
orthogonal eigenvector matrix with the eigenvectors y1,y2, · · · ,yN in the columns obeying Y TY =YY T =
I. The dominance of attraction forces over repulsive ones governs the LCP dynamics eventually to a
trivial steady state, where each node occupies the same position, characterised by β1 = 0 and y1 = u,
as derived in [16, p. 4]. Therefore, LCP’s steady state yields no useful information about communities.
However, before converging to a single position, nodes from the same community tend to be relatively
closer on a line, while being more distant from remaining nodes. Since β1 = 0 and −1 < β j < 0 for
j > 1, |1+β2|> |1+β3| holds. Therefore, after importing (3.4) into (3.2) we obtain

x[k]− uT x[0]√
N

u

(1+β2)k (yT
2 x[0])

= y2 +O
(

1+β3

1+β2

)k

, (3.5)

The left-hand side of (3.5), representing a shifted or normalized position vector, gravitates toward the
second eigenvector y2, accompanied by an exponentially diminishing error as k increases. However, this
only holds true for sufficiently large, but not excessively large, values of k. Thus, the information used
for clustering the graph is provided by this scaled and shifted position vector.

A block diagonal structure of the N ×N adjacency matrix A can be found by sorting the N × 1
eigenvector y2, in ascending or descending order. This sorting process leads to a graph relabeling,
where each node is assigned a new label based on its position in the sorted eigenvector, denoted as ŷ2.
Consequently, the original two-dimensional clustering problem1 is transformed into a one-dimensional
problem. In this new formulation, we either group nodes with similar values in ŷ2 to form communities,
or we determine the community boundaries by optimizing a quality function, such as the modularity.

Clusters are estimated for a node ranking derived from the sorted eigenvector y2 through recursive
optimisation of the modularity. In the first iteration, all possible partitions of the network into two
clusters are examined and their modularity is computed. The partition that yields the highest modularity
is selected. In the second iteration, the same procedure is repeated for each sub-graph and the best
partitions into two clusters are found. Once the best partitions for both sub-graphs are determined, they

1Since a graph structure is defined by a matrix, capturing node-pair relations, clustering problem is a two-dimensional problem,
as it involves grouping nodes in communities. In LCP, we focus on the sorted ŷ2 eigenvector and identify borders of each cluster.
Therefore, LCP reduces the clustering problem to one dimension.
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are adopted if the modularity of the generated partition surpasses the modularity of a parent cluster from
the previous iteration. The recursive procedure is halted when there can be no further improvement
in the modularity. The pseudo-code for this recursive algorithm is in the Appendix F of [16]. Our
LCP’s performance could be further enhanced by integrating the dynamic programming-based algorithm
proposed by Patania et al. [25]. This algorithm offers the advantage of guaranteeing an optimal partition
for a given one-dimensional node embedding.

Finally, to further improve the quality of community partition, non-linearity in the forces can be
introduced iteratively through the scaling of inter-community link weights. A link between nodes i and
j will be scaled down to a positive value smaller than 1 when the difference of their rankings in the sorted
eigenvector ŷ2 is greater than the threshold value. This scaling artificially reduces the strength of forces
between nodes from different clusters. By iteratively decreasing inter-community link weights, LCP
enhances node grouping precision. This reduction weakens the attractive forces between adjacent node
pairs likely belonging to different communities. Without this adjustment, the dominant attraction force
(which scales linearly with distance) would intensify over time. This could erroneously pull neighboring
nodes from distinct communities closer together. Instead, the importance of links between nodes from
different clusters is diminished, guided by the partition derived from the preceding iteration. This variant
is denoted as LCP in Section 4.

3.1 LCP for a known number of communities

The aforementioned algorithm for recursively optimizing modularity can also be applied to graph parti-
tioning with a known number of communities c. In this scenario, the recursive procedure outlined does
not stop when the modularity can no longer be improved, but at iteration (log2 c+1). In every iteration,
the partition with the highest modularity is accepted, regardless of whether it is negative. This variant is
denoted as LCPc in Section 4.

3.2 Non-backtracking variant of LCP

The non-backtracking matrix B is based on the concept of non-backtracking walks on a network G,
which are walks where one does not immediately ”reverse” along a link just traversed. In particular, a
non-backtracking matrix B starts by creating a list of directed links for an undirected network, which
means replacing every link with two directed links in opposite directions. Therefore, for an undirected
network G(N ,L ), the corresponding directed network is constructed with 2L links. Then, the 2L×2L
non-backtracking matrix B is defined by:

B(u→v),(w→z) =

{
1 if v = w and u ̸= z
0 otherwise,

(3.6)

where v,w,z ∈ N .
Krzakala et al.[17] proposed a spectral method for clustering networks based on non-backtracking

matrix. The asymmetric non-backtracking matrix B generally has complex eigenvalues. Most of these
eigenvalues are located within a bulk whose center is the origin of the complex plane and whose radius
is the square root of the largest real eigenvalue. Therefore, they estimated that the number of clusters
in graph G corresponds to the number of real eigenvalues that lie outside this bulk. The computational
complexity of non-backtracking method is O(L3), mainly due to the eigenvalue decomposition., but it
can be [6] reduced to O(N3).
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Angel et al.[1] shows another approach of computing the eigenvalues of a non-backtracking matrix.
Instead of directly decomposing the 2L×2L non-backtracking matrix B, these 2N non-trivial eigenval-
ues are also contained in the decomposed 2N ×2N matrix B∗:

B∗ =

[
A I −∆

I O

]
, (3.7)

where O denotes the N ×N all-zero matrix. This matrix B∗ can be rewritten as:

B∗ =

[
I +(A−∆)+(∆ − I) −(∆ − I)

I O

]
(3.8)

Hence, the matrix B∗ can be viewed as a state-space matrix of a process on a network, consisting of
attractive and repulsive force between adjacent nodes, similar to the LCP process defined in equation
(3.2). In the process outlined by the matrix B∗, the final N states (corresponding to the second block
row in B∗) store nodal position vector form a previous iteration. The matrix B∗ establishes a set of N
second-order difference equations. The governing equation that dictates the position of node i is defined
by

xi[k+1] = xi[k]+ ∑
j∈Ni

(x j[k]− xi[k])+(di −1) · (xi[k]− xi[k−1]), (3.9)

where the second term can be considered as a uniform attractive force between neighboring nodes,
whereas in LCP, the intensity of the attractive force is dependent on the number of common neighbors
between two adjacent nodes. In addition, we observe from (3.9) that node i is pushed away from its
former position xi[k] in the direction of its most recent position change xi[k]− xi[k− 1]. We define the
2N ×2N matrix W ∗, corresponding to B∗, as follows

W ∗ =

[
I +α · (A◦A2 +A−diag((A◦A2 +A) ·u)+(∆ − I) −(∆ − I)

I O

]
(3.10)

where the attractive force is retained according to (3.1), while the repulsive force is adopted as in the
non-backtracking clustering method. The number of clusters c is determined by counting the number of
real eigenvalues in W ∗, which exceed the square root of its largest real eigenvalue.

We named the approach LCPn and we test it on several benchmarks, random network models and
real-world networks. Specific results and analysis are presented in Section 4. The positive aspect is
that LCPn performs almost identically to non-backtracking on the Stochastic Block Model and random
network models. However, LCPn performs poorly on power-law networks, such as the LFR bench-
mark and some of real-world networks as shown in Figure 1. After analysis and testing, we found that
for power-law networks, the attraction strength α has a significant impact on the performance of the
algorithm. Previously, we have fixed α = 0.95, mainly because an α close to 1 helps to maximize the
difference between the second largest eigenvalue β2 and the third largest eigenvalue β3 of the N ×N
matrix W − diag(W · u). Therefore, for the power-law network, we adopt the strategy of dynamically
adjusting the value of α , which is described below.

The probability density function fD(d) of the power-law distribution [7] is as follows

fD(d) = cp ·d−γ , (3.11)
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FIG. 1. The estimated number of clusters (upper left) and estimated modularity (upper right) in LFR benchmark graphs with
N = 500 nodes, an average degree of dav = 12, comprising c = 5 clusters. The graphs are generated using parameters γ = 2 and
βl f r = 3 and varying the parameter µ . The lower left and lower right figures display the Normalized Mutual Information (NMI)
and Element-centric similarity (ECS) measures for each clustering algorithm.

where cp = 1−γ

d1−γ
max −d1−γ

min
denotes the normalisation constant, while γ denotes the power-law exponent or

scaling parameter. For a given network, we utilise the N×1 degree vector d to estimate the correspond-
ing power-law exponent γ , which helps determining whether a network is a power-law network and how
”skew” the degree distribution is. In particular, the power-law exponent γ determines the shape of the
distribution[7][3]:

• A smaller power-law exponent indicates a heavy-tailed distribution, meaning that there are more
highly connected nodes (or ”hubs”) in the network. These networks are sometimes described
as ”scale-free” because their degree distributions are the same at all scales. In other words, the
proportion of nodes with a certain number of links remains constant, regardless of the total number
of links;

• A larger power-law exponent indicates a lighter-tailed distribution. This means that the network
has fewer highly connected nodes. As the power-law exponent increases, the distribution becomes
more similar to an exponential distribution, which has fewer hubs and is less skewed.
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Based on this power-law characteristic, we consider that if power-law exponent γ increases, the
value of the attraction strength α should also increase, because its network properties will be closer to
a random network rather than a power-law network. We use the LFR benchmark to generate networks
with different γ to find the relationship between power-law exponent γ and attraction strength α , by
changing attraction strength α and testing on networks with fixed γ to find the γ value that can make the
algorithm perform optimally. Finally, we summarize our findings in the following function:

α =

{
0.3× γ −0.1 if 1 < γ ⩽ 3.5
0.95 otherwise,

(3.12)

In (3.12), we set an upper bound α = 0.95 and the relationship between γ and γ for 1< γ ⩽ 3.5 is derived
from a linear fit to the results of the above experiments. Figure 1, with the strategy of dynamically
adjusting the value of γ shows that the performance of LCPn improves significantly from that with
fixed α , but is clearly still inferior (in the modularity m, NMI and ECS measure) to that of the Non-
backtracking matrix.

4. Comparing clustering algorithms

4.1 Computational complexity

Table 1. Computational Complexity of considered clustering algorithms
Clustering Algorithm Computational Complexity
Leiden O(L)
Louvain2 O(L)
Local Dominance O(L)
LCP O(N ·L)
LCPc O(N ·L)
LCPn O(N3)

Newman O(N3)

Non-backtracking O(N3)

Eigengap O(N3)

The Louvain method [4] is known for its efficient clustering performance, requiring minimal com-
putational complexity. Studies have demonstrated that its time complexity is linear with the number of
links L in sparse graphs. An improved version of Louvain, called the Leiden method, achieves compa-
rable complexity when performing community partitioning. On the other hand, the Local Dominance
approach utilizes local information to estimate communities in a graph, resulting also in a computa-
tional complexity that scales linearly with the number of links. In contrast, our LCP demands greater
computational effort for estimating partitions. The computational complexity of LCP, as described in
[16], scales linearly with the product of the number of nodes N and the number of links L. The vari-
ant LCPc of our LCP, where the number of communities c is provided as input, exhibits a comparable
computational complexity. Furthermore, our LCPn variant employs eigenvectors of the corresponding
governing matrix W ∗ to estimate communities. This approach requires computational effort that scales
with the cube of the network size, denoted as O(N3). A similar computational complexity also applies
to any spectral clustering method, which is necessary for performing spectral decomposition.
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4.2 SBM benchmark

4.2.1 SSBM network with c = 2 clusters Figure 2 illustrates the clustering performance of the LCP
algorithm and other methods considered in this study. Regarding the estimation of the number of com-
munities c (top-left figure), the non-backtracking (NBT) method and the equivalent version of LCP
(i.e. LCPn, see Section 3.2) demonstrate superior performance, converging to two clusters for values of
bin − bout above the detectability threshold. The EigenGap method follows closely, achieving conver-
gence to the exact number of clusters for higher values of bin −bout , while estimating more than c = 2
communities in the undetectable regime. In terms of precision in estimating the true number of clusters,
LCP ranks fourth and converges to c = 2 only when the clusters are clearly distinct (i.e., when there is a
large difference between bin and bout ), because it optimises modularity m, as explained in the following
paragraph. Although the Newman method performs the worst when the clusters are indistinguishable, it
outperforms Louvain, Leiden and Local Dominance methods once the communities start to emerge from
the randomness in the SSBM network structure. The Louvain and Leiden methods perform similarly on
SSBM networks with c = 2 clusters and converge to the correct number of clusters only in cases when
there are almost no inter-community links. These two algorithms’ tendency to identify a large number
of communities stems from their design, which initializes every node as a separate community. Finally,
the Local Dominance performs the worst overall, irrespective of the number of inter-community links.

LCP identifies partitions with the highest modularity m overall, as depicted in the upper right-hand
side of Figure 2. Even when original clusters are indistinguishable from randomness, LCP identifies
alternative communities by optimising the modularity m. The variant LCPc of LCP, which receives the
true number of communities as input, achieves the original modularity m in the region where commu-
nities are visible. Furthermore, just above the detectability threshold, the modularity achieved by LCPc
exceeds the original modularity m, indicating that alternative partitions with the same number of com-
munities but higher modularity coexist around the threshold! The same argument explains the incorrect
number of clusters c identified by LCP, as the achieved modularity is consistently higher than that of
the original partition. Non-backtracking method and our LCPn achieve modularity m of the planted
partition once they estimate the correct number of clusters c. In contrast, when original communities
are indistinguishable from randomness, these methods fail to reveal any clusters, and thus the resulting
modularity is zero. For lower values of bin − bout , the Leiden method performs closely to LCP. At the
same time, the performance declines as the number of intra-community links increases compared to
other algorithms. Leiden consistently outperforms Louvain, which aligns with the idea of the Leiden
method being an improvement of the Louvain algorithm. Since the Newman method converges to the
correct number of clusters c, its modularity increases and tends towards the original modularity when
clusters are visible while identifying alternative partitions with superior modularity when original clus-
ters are not distinguishable. Finally, Louvain and Local Dominance perform similarly in modularity
when original clusters are not clearly visible, while Louvain estimates better partitions as the number of
inter-community links decreases.

We utilise the NMI measure explained in Section 2.2, together with the ECS measure described
in Section 2.3, to compare the estimated partitions of each clustering algorithm considered with cor-
responding planted partitions. From the NMI measure presented in the bottom-left part of Figure 2,
we observe that the non-backtracking method (NBT) and our LCPn reveal partitions most similar to
the planted partition overall, when they estimate a correct number of clusters. The LCPc variant3 per-

3which receives the number of clusters c as input
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FIG. 2. The estimated number of clusters (upper left-hand figure) and estimated modularity (upper right-hand figure) in case of
SSBM graph with N = 500 nodes, average degree dav = 7 and c = 2 clusters, for different values of parameters bin and bout . The
NMI and ECS measures per each clustering algorithm are provided in the lower left-hand side and lower right-hand side figures,
respectively. The vertical dashed line indicates the clustering detectability threshold.

forms the best when clusters are visible (i.e. for higher values of bin − bout ). However, just above the
detectability threshold, LCPc identifies alternative communities with superior modularity m and, thus,
less similar to the planted partition. The Newman method and LCP perform similarly in the region
above the detectability threshold but worse than the EigenGap method. At the same time, LCP outper-
forms remaining considered algorithms, especially as the number of inter-community links decreases.
Leiden and Louvain perform similarly, with Leiden reproducing original partitions with slightly higher
accuracy, while Local Dominance performs the worst.

The Element-centric similarity (ECS) measure, proposed in [13], accommodates overlapping and
hierarchical clusterings, thereby resolving the bias in the NMI measure towards many clusters. The
ECS measure reveals that NBT, our LCPn and LCPc, dominantly outperform other clustering algorithms
when identifying partitions in the SSBM network with c = 2 communities, regardless of the number of
inter-community links. The ECS measure achieved by LCPc drops locally above the detectability thresh-
old due to observed alternative partitions, as explained in the previous paragraph. EigenGap follows the
aforementioned algorithms in ECS performance while being outperformed by our LCP in the case of
a relatively low number of inter-community links. Overall, our LCP predominantly outperforms all
non-spectral clustering methods considered. It is worth noting that LCP performs clustering based on a
linear physical process while estimating the borders of clusters by maximizing modularity. Therefore,
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the ECS measure clearly indicates that LCPc accurately discovers clusters through its underlying pro-
cess. Other algorithms perform similarly, whereas Newman outperforms the remaining algorithms for
the bin − bout values above the detectability threshold. In contrast, the Leiden and Louvain algorithms
dominate once the clusters become more visible. The modularity of the community partition found by
LCP is always quite higher than the original, which means that LCP found a better alternative parti-
tion and therefore failed to restore the original partition. This is an inherent shortcoming of LCP when
dealing with networks with dense inter-community links.

4.2.2 SSBM network with c = 4 clusters
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FIG. 3. The estimated number of clusters (upper left-hand figure) and estimated modularity (upper right-hand figure) in SSBM
graphs with N = 500 nodes, average degree dav = 7 and c = 4 clusters, for different values of parameters bin and bout . The
NMI and ECS measures per each clustering algorithm are provided in the lower left-hand side and lower right-hand side figures,
respectively. The vertical dashed line indicates the clustering detectability threshold.

Figure 3 illustrates the clustering performance of our LCP and other considered clustering algorithms
for the SSBM network with c = 4 communities. The rankings of clustering algorithms in accurately
estimating the number of clusters remain consistent with those in the case of SSBM graphs having c = 2
communities. We observe that each considered clustering algorithm, in the case of SSBM networks with
different bin −bout values below the detectability threshold, tends to reveal the same number of clusters,
regardless of the number of planted communities c. The algorithms, namely Eigengap, non-backtracking
method, and our LCPn, exhibit the highest precision in estimating the number of communities, followed
by LCP. Newman, Louvain, and Leiden methods demonstrate comparable performances, eventually



14 of 31 INSERT SHORT AUTHOR LIST FOR VERSO RUNNING HEAD

converging to the correct value of c, particularly when the number of inter-community links is relatively
low. However, Local Dominance erroneously estimates the community structure irrespective of the
number of links connecting nodes from different communities.

Our LCP produces partitions with the highest modularity overall, as depicted in the right-upper
part of Figure 3. In this case, knowing the exact number of communities does not benefit LCP from
higher modularity, as Figure 3 illustrates from the modularity performance of LCPc. Just above the
detectability threshold, our LCPc reveals partitions different from the planted one, with the exact number
of clusters but of superior modularity. NBT and our LCPn achieve modularity of the planted partition
as their estimated number of clusters converges to the correct number of communities, outperforming
EigenGap consistently when communities are distinguishable from randomness. Leiden and Newman
methods exhibit similar performances, followed by Louvain, while the Local Dominance algorithm
performs the worst.

The lower part of Figure 3 illustrates the similarity between the estimated community structure of
each clustering algorithm and the planted partition in the generated SSBM graph, using the NMI (left
lower part) and ECS (right lower part) measures. Based on the NMI and ECS measures, NBT and
our LCPn exhibit the highest similarity to the original community structure overall for bin −bout values
above the detectability threshold. Their performance is followed by our LCP, which produces parti-
tions significantly more similar to the original one than the remaining clustering algorithms considered.
However, around and below the detectability threshold, the NMI measure of other clustering algorithms
surpasses that of our LCP. This trend can be attributed to the bias of the NMI measure towards a larger
number of clusters. Louvain, Leiden, Newman and the Local dominance method estimate more clusters
than our LCP, leading to higher NMI measures for lower values of bin−bout . As explained in subsection
2.3, the ECS measure effectively mitigates the inherent bias towards a greater number of communities
in the NMI measure. Consequently, the lower-right section of Figure 3 consistently demonstrates the
superiority of our LCP across the entire range of bin − bout values. Finally, Figure 3 illustrates that
our LCPc leverages the input of the number of clusters to achieve enhanced performance in the ECS
measure, particularly around and below the detectability threshold.

Our LCP demonstrates strong performance in identifying communities within SSBM networks fea-
turing equal expected node degrees, as long as these communities remain distinguishable. However, as
the proportion of inter-community links increases, LCP’s ability to identify meaningful communities
diminishes (despite achieving the highest modularity among considered algorithms).

4.3 LFR benchmark

The Lancichinetti-Fortunato-Radicchi (LFR) benchmark, proposed in [19], aims to overcome limita-
tions in the SBM benchmark, including the uniform degree and community size distribution. The LFR
benchmark incorporates a power-law degree distribution and a community size distribution inspired by
observations in real-world networks. In this subsection, we evaluate the performance of our LCP method
and other clustering algorithms on LFR graphs.

Figure 4 illustrates the clustering performance of our LCP and other clustering algorithms considered
in a network with N = 500 nodes and c = 5 communities. These LFR communities were generated with
parameters β = 3 and γ = 2. In the top left section of the figure, we observe that, overall, our LCPn out-
performs all other methods in estimating the number of clusters. When the number of inter-community
links is high, the NBT method incorrectly estimates the number of communities. Nevertheless, once
the clusters become clearly visible in the network, NBT provides the most precise estimate among all
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FIG. 4. The estimated number of clusters (upper left) and estimated modularity (upper right) in LFR benchmark graphs with
N = 500 nodes, an average degree of dav = 12, comprising c = 5 clusters. The graphs are generated using parameters γ = 2 and
βl f r = 3 and varying the parameter µ . The lower left and lower right figures display the Normalized Mutual Information (NMI)
and Element-centric similarity (ECS) measures for each clustering algorithm.

the methods considered. Our LCP converges to the correct value of c for relatively low µ values, while
identifying alternative community clusters elsewhere, which have a higher number of communities. In
contrast, the EigenGap method exhibits the opposite trend. It successfully reveals the true number of
communities when there are relatively few connections between nodes from different clusters. However,
as the ratio of inter-community links increases, EigenGap method converges to a single community. The
Louvain and Leiden methods perform similarly, with Leiden consistently providing a more accurate esti-
mate of the true number of communities. Interestingly, both approaches tend to estimate an increasing
number of communities as µ increases, until a certain value is reached. After this point, there is a
decreasing trend in estimating c, indicating the presence of alternative community structures for large
values of µ . We will further discuss this trend when analysing the achieved modularity m. Newman’s
method estimates an increasing number of communities as µ increases and reaches a saturation point
around c = 16 for a large ratio of inter-community links. Finally, the Local Dominance method fails to
reveal any meaningful community structure across all the considered values of µ .

The top-right portion of Figure 4, evidences that our LCP provides the highest overall modularity
of the estimated partition. The initial decreasing trend in the modularity m indicates the augmenting
difficulty of accurately estimating the community structure as the ratio of inter-community links. How-
ever, for large values of µ , both our LCP and nearly all other clustering algorithms considered manage
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to recover community structures with higher modularity than that of the original community structure.
The deviation from the original partition clearly demonstrates the emergence of an alternative commu-
nity structures, distinct from the original one, as µ values increase. When the number of communities
is known, our LCPc performs slightly worse than LCP in terms of modularity but still surpasses the
performance of other considered algorithms, thus confirming the superiority of our LCP, where the pro-
posed linear process of relocating nodes on a one-dimensional line successfully reveals communities
with excellent accuracy. Leiden, NBT, Louvain, and Newman follow with comparable modularity per-
formance, while our LCPn and EigenGap exhibit significantly poorer results. Lastly, Local Dominance
exhibits very low modularity m, converging to 0, which aligns with its failure to unveil any meaningful
community structure for the majority of µ values.

From both the recorded NMI (bottom-left) and ECS (bottom-right) similarity measures presented in
Figure 4, consistent patterns are observed for all the clustering algorithms considered. Whenever our
LCP accurately estimates the true number of clusters, LCP exhibits the highest accuracy in recover-
ing the original partition. However, for higher µ values, LCP starts revealing alternative communities,
resulting in relatively lower values in both similarity measures. On the other hand, NBT demonstrates
the slowest decrease in similarity measures as the ratio of inter-community links increases. Local Dom-
inance performs the worst, while the remaining approaches achieve comparable results in terms of NMI
and ECS values.

In case of LFR networks with c = 5 communities, the NBT variant of Linear Clustering Process
(LCPn) performs significantly worse in estimating the number of communities compared to other spec-
tral methods, namely NBT and Spectral Gap. This is illustrated in the upper-left section of Figure
5. While LCP generally provides the most precise estimation of the number of clusters c, it does not
necessarily generate community partitions that closely resemble the original planted partition in this
particular case. This observation is supported by corresponding NMI and ECS similarity measures. As
discussed in Section 2.4.1, for Stochastic Block Model (SSBM) networks, when fails to identify the
original partition, LCP tends to discover 8 communities, even though the true number of clusters is
different. Such a behaviour persists and becomes more pronounced for larger values of the parameter
µ , where LCP identifies communities that differ from the planted partition but eventually converges
to 8 communities, regardless of the actual number of clusters c. Louvain outperforms both Leiden and
Newman method consistently, while Local Dominance estimates communities with worst precision, and
failing to discover any community for larger values of µ .

Our LCP and LCPc yield partitions with the highest modularity overall, as shown in the upper-right
portion of Figure 5. The performance of the other clustering methods considered is comparable to those
obtained for LFR networks with c = 5 communities. The lower left (right) part of Figure 5 illustrates
the similarity measures NMI (ECS) and demonstrates the dominance of our LCP within the range of µ

values where it accurately estimates the number of communities. However, for µ values greater than 2.5,
the NBT method outperforms our LCP in identifying the correct number of clusters and, consequently,
produces partitions more similar to the planted community structures.

Despite the inherent variability of node degrees and community sizes within the LFR benchmark,
our LCP demonstrates exceptional performance in identifying communities with the highest modular-
ity among considered algorithms. Even when communities become indistinguishable within the LFR
benchmark (i.e. for a relatively large µ value), LCP and other algorithms still discover alternative com-
munity structures that exhibit higher modularity than the original graph.
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FIG. 5. The estimated number of clusters (upper left) and estimated modularity (upper right) in LFR benchmark graphs with
N = 500 nodes, an average degree of dav = 12, comprising c = 10 clusters. The graphs are generated using parameters γ = 2 and
βl f r = 3 and varying the parameter µ . The lower left and lower right figures display the Normalized Mutual Information (NMI)
and Element-centric similarity (ECS) measures for each clustering algorithm.

4.4 Random Graph models

Erdős–Rényi random graph [11], denoted as G(N, pER), is a fundamental model in network science,
characterised by their random and independent assignment of links between nodes based on a given
link probability pER. Erdős–Rényi random graphs generally lack a clear and well-defined community
structure, as demonstrated in [28, p. 630] by the average clustering coefficient, a measure of the ratio
of the number of links between a node’s neighbours and the maximum possible number of links. Due
to the random nature of connections between nodes, the links tend to be evenly distributed across the
nodes without observable community structure. However, community detection algorithms can still be
applied to uncover potential structures or patterns within these graphs.

The upper-left part of Figure 6 illustrates the estimated number of clusters c by LCP and other con-
sidered clustering algorithms on ER graphs with N = 500 nodes and varying link density pER. Apart
from the non-backtracking (NBT) method and our LCPn, which accurately recover the exact number of
communities, the remaining algorithms provide incorrect estimates. LCP and Eigengap exhibit similar
performance, while Local Dominance and Newman methods perform comparatively poorer in estimat-
ing the number of communities but with increased precision as the link density pER rises. Notably,
Louvain and Leiden algorithms estimate a higher number of communities, which increases with the link
density pER.
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Regarding the achieved modularity m of the estimated partition, our LCP algorithm surpasses other
analysed clustering algorithms for all considered values of link density pER. Newman and Leiden algo-
rithms rank as the second and third best in terms of modularity performance, while Local Dominance
performs the worst. Overall, clustering algorithms reveal a community structure with higher modularity
in sparse ER graphs compared to graphs with higher link density. Although ER graphs, on average, do
not exhibit a community structure, specific instances of the graph may contain more visible clusters. The
probability of finding communities in ER graphs is greater when the graph is sparser, as an increased
number of links makes the graph more regular in nature, causing communities to dissipate.

FIG. 6. The estimated number of clusters (upper figures) and estimated modularity (bottom figures) in Erdős-Rényi random
graph (left-hand side) with varying link density pER, Barabási-Albert graph (middle part) with varying parameter mBA, and Watts-
Strogatz graph (right-hand side) with varying rewiring probability pWS. The graphs consist of N = 500 nodes.

Interestingly, when applied to the Barabási-Albert graphs, the Local Dominance algorithm provides
cluster estimates with a precision closely resembling that of the non-backtracking method (NBT) and
our LCPn, as shown in the upper middle section of Figure 6. On the other hand, our LCP algorithm
estimates a significantly lower number of clusters than the other three algorithms, gradually decreasing
the number of discovered clusters as the parameter mBA increases. The Newman method ranks fifth in
the estimated number of communities c, also exhibiting a decrease in the number of communities as the
parameter mBA increases. In contrast, the Louvain and Leiden algorithms, while optimizing modularity
m, estimate an increasing number of clusters c that does not result in the highest modularity m, as
evidenced by the LCP performance in the lower middle section of Figure 6. We observe that Local
Dominance and our LCPn achieve the lowest modularity m, followed by NBT and EigenGap. As with
ER graphs, our LCP algorithm achieves the highest modularity overall. Newman, Louvain, and Leiden
methods perform similarly in modularity m, which decreases as the parameter mBA of the BA model
increases.

The Watts-Strogatz graph model, proposed in [30], is derived from a regular ring lattice by randomly
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rewiring connections while maintaining a fixed number of nodes N and links L. By increasing the
rewiring probability pWS, a small-world phenomenon emerges abruptly, as illustrated by the average
shortest path hop count on a logarithmic scale in [30, Figure 2]. However, this phenomenon is not
observed locally, as demonstrated by the clustering coefficient (defined in [28, page 630]). The right-
hand part of Figure 6 the number of clusters c (upper figure) and achieved modularity m (lower figure)
of considered clustering algorithms, when applied to the Watts-Strogatz model with N = 500 nodes,
using different rewiring probabilities pWS.

For low values of pWS, the Local Dominance method fails to detect any community structure, result-
ing in a low modularity value. As the rewiring probability pWS increases, the Local Dominance method
gradually reveals an increasing number of communities with modularity levels comparable to other algo-
rithms. Surprisingly, the EigenGap method underperforms by estimating the highest number of com-
munities c, thus achieving the lowest modularity m values. Overall, the Louvain and Leiden methods
estimate the lowest number of communities, leading to lower modularity m values than the remaining
methods. Our LCP records fewer communities than the remaining clustering methods while achiev-
ing the highest modularity overall. Finally, we highlight that our LCPn consistently outperforms the
non-backtracking (NBT) method.

4.5 Real-world networks

Network N L C M LCP LCPc Louvain
c m nmi ecs c m nmi ecs c m nmi ecs

Email-EU 1005 25571 42 0.2880 9 0.3860 0.5466 0.2513 - 0.3005 0.5855 0.3066 12 0.3795 0.5530 0.2747
Cora 2708 5429 7 0.6401 25 0.7296 0.3138 0.2121 - 0.6553 0.2102 0.2370 86 0.6775 0.3691 0.2808

Citeseer 3264 9072 6 0.5042 65 0.8027 0.1399 0.0737 - 0.7050 0.0710 0.1919 394 0.7722 0.3095 0.1878

Network N L C M Leiden Newman Local Dominance
c m nmi ecs c m nmi ecs c m nmi ecs

Email-EU 1005 25571 42 0.2880 17 0.3745 0.6352 0.3711 14 0.3492 0.5668 0.3003 1 0.0000 0.0000 0.0669
Cora 2708 5429 7 0.6401 85 0.7403 0.4201 0.2722 68 0.7166 0.4146 0.1896 181 0.6728 0.4271 0.1648

Citeseer 3264 9072 6 0.5042 395 0.7367 0.3438 0.2064 311 0.8276 0.3307 0.0560 505 0.7691 0.3889 0.0619

Network N L C M Non-backtracking LCPn Eigengap
c m nmi ecs c m nmi ecs c m nmi ecs

Email-EU 1005 25571 42 0.2880 17 0.2792 0.5061 0.2599 2 0.0932 0.2310 0.1211 5 0.2931 0.3538 0.1673
Cora 2708 5429 7 0.6401 40 0.5000 0.3016 0.1558 39 0.5674 0.3320 0.1943 2 0.1072 0.1599 0.1961

Citeseer 3264 9072 6 0.5042 17 0.3595 0.1618 0.1594 16 0.4389 0.1573 0.1581 3 0.1583 0.0960 0.1760

Table 2. Clustering performance of our LCP and considered existing clustering algorithms on real-world networks with ground-
truth communities

4.5.1 Real-world networks with known communities In this section, we evaluate the performance
of our Linear Clustering Process (LCP) and other clustering algorithms on real-world networks with
known4 ground-truth community structures. The Email eu network comprises N = 1005 nodes and has
the highest link density, with a total of L = 25571 links. This network forms c = 42 communities. Our
LCP identifies a partition with the highest modularity, while the Leiden algorithm estimates more accu-
rately the number of clusters, resulting in a partition that closely aligns with the ground truth. The Cora
network consists of N = 2708 nodes interconnected by L = 5429 links, forming c = 7 communities.
The Leiden algorithm produces a community structure with the highest modularity, closely followed
by our LCP. However, our LCP excels in estimating the number of communities compared to Leiden.
Finally, the Citeseer network exhibits the smallest number of clusters (c = 6). While the Newman algo-
rithm identifies a partition with the highest modularity, its estimated number of communities deviates
significantly from the correct value.

4We acknowledge that the identified communities in considered real-world networks represent one possible grouping. Ground
truth data for communities is often subjective and depends on the specific attributes used.
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Based on the results presented in Table 2, we note a significant sensitivity of the NMI and ECS
similarity measures to the estimated number of clusters. The NMI measure exhibits a bias towards
partitions with a larger number of communities. Conversely, for the Citeseer network, we observe that
the ECS measure of both the Louvain and Eigengap algorithms is similar, despite their substantially
different estimates of the number of clusters.

4.5.2 Real-world networks without known communities Table 3 provides a summary of the clustering
performance of our LCP algorithm and other clustering algorithms from existing literature on real-
world networks where the ground-truth community structure is unknown. The network sizes range
from N = 34 (Karate networks) to N = 1589 (Co-authorship network). Among the seven networks
considered, our LCP algorithm achieves the highest modularity m in four cases, while it ranks as the
second best in the Dolphins and Football networks. In one case, specifically the Co-authorship network,
it ranks as the fourth best algorithm in terms of modularity.

Network N L LCP Louvain Leiden Newman
c m c m c m c m

Karate club 34 78 3 0.3922 4 0.3565 4 0.3729 5 0.3776
Dolphins 62 159 4 0.5057 4 0.4536 5 0.5105 6 0.4894
Polbooks 105 441 3 0.5160 4 0.4897 4 0.5026 8 0.4160
Football 115 613 7 0.5894 7 0.5442 7 0.5635 11 0.4623

Facebook 347 2519 8 0.4089 16 0.3726 18 0.3792 23 0.3770
Polblogs 1490 19090 19 0.4224 7 0.3385 11 0.3117 4 0.3459

Co-authorship 1589 2742 40 0.9296 272 0.9423 270 0.9410 28 0.7393

Network N L Local Dominance NBT LCPn Eigengap
c m c m c m c m

Karate club 34 78 2 0.3123 2 0.3715 1 0.0000 2 0.2780
Dolphins 62 159 3 0.3620 2 0.3698 2 0.3698 2 0.3115
Polbooks 105 441 2 0.4451 3 0.5085 2 0.4546 2 0.4167
Football 115 613 6 0.3205 10 0.5939 5 0.5522 11 0.5927

Facebook 347 2519 8 0.2067 8 0.3638 7 0.3544 2 0.2836
Polblogs 1490 19090 3 0.2799 8 0.2149 5 0.3480 2 0.2679

Co-authorship 1589 2742 277 0.9431 23 0.5005 17 0.5806 2 0.1288

Table 3. Clustering performance of our LCP and considered existing clustering algorithms on real-world networks without ground-
truth communities

5. Conclusion

In this study, we conducted a comprehensive analysis of the clustering performance of the recently
introduced Linear Clustering Process (LCP) on networks. We compared LCP with several widely used
clustering algorithms that employ different techniques for estimating partitions, including modularity
optimization and spectral methods. The results of our simulations demonstrate that in the majority of
cases, both for synthetic and real-world networks, LCP generates communities with significantly higher
modularity. Specifically, when the underlying clusters are clearly discernible, LCP successfully recovers
partitions that closely resemble the true clusters. Moreover, even in situations where clusters are not
easily distinguishable from random patterns, LCP is able to identify alternative clusters with superior
modularity. Overall, our findings highlight the effectiveness of LCP in achieving highly modular and
meaningful community structures in diverse network settings.
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A. List of used notations

Notation Explanation

G Graph
N Set of N nodes of graph G
Ni Set of neighboring nodes of node i
L Set of L links of graph G
N Number of nodes in graph G
L Number of links in graph G
A Adjacency matrix of graph G
ai j i j-th element of adjacency matrix A
d Degree vector
di Degree of node i
∆ Degree diagonal matrix
u N ×1 all-one vector
m Modularity
C Cluster matrix
c Number of clusters
ni Number of nodes in cluster i
F Confusion matrix

In(P0,Pe) Normalized mutual information metric
P0 Known partition
Pe Estimated partition
c0 Number of known clusters
ce Number of estimated clusters
pi j Personalized PageRank
δ Kronecker delta function

cγ ,cβ Cluster
vi,v j Element of corresponding cluster
αecs Restart probability constant

A , B Clustering
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Notation Explanation

S(A ,B) Element-centric similarity score
pin,bin Intra-community link probability

pout ,bout Inter-community link probability
E[D] Expected degree

γ Power-law exponent of degree distribution
βl f r Power-law exponent of community size distribution
µ Inter-community link probability

dav Average degree
α Attraction strength
δ Repulsion strength

xi[k] Position of node i at time k
k Discrete time
I N ×N identity matrix

W N ×N topology-based matrix
β N ×1 eigenvalue vector
βi Eigenvalue i
Y N ×N orthogonal eigenvector matrix
yi Eigenvector i
ŷi Sorted eigenvector i
B 2L×2L non-backtracking matrix
B∗ 2N ×2N matrix
O N ×N all-zero matrix

fD(d) Probability density function of degree d
cp Normalization constant

pER Link density
mBA Number of nodes connected by the new node
pWS Rewiring probability

y Cluster membership
M N ×N modularity matrix
zi i-th eigenvector
ζi i-th eigenvalue
Ã N ×N weighted adjacency matrix

∆m Modularity gain
∑in Sum of the weights of intra-community links in community h
∑tot Sum of the weights of all links in G incident to any node in

community h
λ (A) Eigenvalues of the adjacency matrix A
λ (M) Eigenvalues of the modularity matrix M

Table A.4: Notations used in the paper
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B. Considered clustering algorithms

B.1 Louvain method

The Louvain method, proposed by Blondel et al. [4], is a powerful yet straightforward heuristic clus-
tering algorithm. This method employs an iterative and unsupervised two-step procedure to optimize
modularity, denoted as m. Initially, a directed graph G with an N ×N weighted adjacency matrix M is
partitioned into N clusters, where each node constitutes its own cluster or community.

In the first stage, the algorithm evaluates the change in graph modularity m if node i were to be
assigned to the community of its neighboring node j ∈ N i. The modularity gain ∆m resulting from
assigning node i to community h of adjacent node j is defined in [4] as follows:

∆m =

(
∑in+2∑l:Cl j=1 Mil

2L
−
(

∑tot+di

2L

)2
)
−(

∑in

2L
−
(

∑tot

2L

)2

−
(

di

2L

)2
)
,

(A.1)

where ∑in represents the sum of the weights of intra-community links in community h, and ∑tot denotes
the sum of the weights of all links in G incident to any node in community h. Node i is assigned to
the community that yields the largest positive gain in modularity m. If all computed gains ∆m are
either negative or smaller than a predefined small positive threshold value, node i remains in its original
community. The first stage concludes when modularity m can no longer be increased by re-assigning
nodes to neighboring communities.

In the second stage of each iteration, the weighted graph obtained from the first stage is transformed
into a new weighted graph, where each node represents a community. The link weight between two
nodes h and g is equal to the sum of weights of all links between communities h and g in the graph
obtained from the first stage. Moreover, the weight of a self-loop of node g in the new graph equals the
sum of weights of all intra-community links in cluster g of the graph from the previous stage. This new
graph is then fed into the first stage for the next iteration. The algorithm terminates when modularity m
can no longer be increased. The time complexity of the Louvain method is linear with the number of
links O(L) for sparse graphs [4].

B.2 Leiden method

Although the Louvain method is widely used in clustering algorithms, it has a drawback of identifying
poorly connected or disconnected communities. This limitation was first identified by Traag et al., who
introduced the Leiden algorithm as an improvement to the Louvain method in their work [27]. The Lei-
den algorithm aims to estimate graph partitions while ensuring the creation of connected communities.
The Leiden algorithm involves three iterative steps:

1 Local moving of nodes: This step is an enhanced version of the first step in the Louvain algo-
rithm, described in Equation (A.1). While the Louvain algorithm randomly visits each node until
modularity can no longer be improved by moving a node to a different community, the Leiden
algorithm only visits nodes whose adjacent nodes have been relocated. This is achieved by plac-
ing nodes in a queue and iteratively checking if the cluster membership of a node can be updated
to enhance the quality function. When a node is moved to another community, its neighbors from
other communities are placed in the queue.
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2 Refinement of the partition: In this step, each node is initially assigned its own community. Nodes
are merged locally, meaning only within communities estimated in the previous stage. Two nodes
within the same community are merged only if both nodes are well connected to the community
from the previous stage. At the end of the refinement stage, partitions from the first stage are often
split into multiple communities.

3 Aggregation of the network: This step involves aggregating the network based on the refined par-
tition obtained from the previous stage, similar to the second stage of the Louvain algorithm.

The Leiden algorithm achieves faster clustering compared to the Louvain algorithm while generally
providing improved partitions [27].

B.3 Newman method

Newman introduced a clustering algorithm based on modularity optimization [22]. The algorithm begins
by estimating the bisection of a graph, aiming to generate the highest modularity value m using Equation
(2.1), which can be expressed as:

m =
1

4L
yT ·M · y, (A.2)

where, the N × 1 vector y represents the cluster membership of each node, with values of either 1 or
−1. The N ×N modularity matrix M = A− 1

2L · d · dT can be decomposed into its eigenvalues and
eigenvectors as:

M =
N

∑
i=1

ζi · zi · zT
i , (A.3)

where, the N×1 eigenvector zi corresponds to the i-th eigenvalue ζi. The vector y = ∑
N
j=1(z

T
j ·y) · z j can

be expressed as a linear combination of the eigenvectors zi1⩽i⩽N , transforming Equation (A.2) into:

m =
1

4L

N

∑
i=1

ζi · (zT
j · y)2. (A.4)

To maximize the modularity m, Newman proposed setting yi = 1 if (z1)i > 0, otherwise yi = −1. This
procedure is repeated in subsequent iterations by dividing the graph into two partitions based on spectral
properties. However, considering only the block sub-matrix of M corresponding to the cluster g in the
next iteration would ignore inter-community links. Instead, for the estimated cluster g, the modularity
matrix Mg is updated using:

Mg = mi j −

(
∑
k∈g

mik

)
·δi j, (A.5)

Here, the Kronecker delta δi j is 1 if i = j, and 0 otherwise. The algorithm terminates when further
improvement in modularity m is no longer possible.
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B.4 Eigengap method

Besides modularity as a quality function, Newman[22] also defined a N ×N real symmetric matrix M
with elements

Mi j = Ai j −
did j

2L
(A.6)

which called the modularity matrix. The estimation of the number of clusters c is determined by the
maximum eigengap of the modularity matrix M, following the same process described for the adjacency
matrix A. The eigenvalues of the modularity matrix M can firstly be sorted in descending order λ1(M)⩾
λ2(M) ⩾ · · · ⩾ λN(M). Hence, it can be observed that the eigenvalues of the modularity matrix M and
the adjacency matrix A are interlaced[6]:

λ1(A)⩾ λ1(M)⩾ λ1(A)⩾ λ2(M)⩾ · · ·⩾ λ1(A)⩾ λN(M) (A.7)

Finally, the number of clusters c could be estimated by

c = argmax
i

(λi−1(M)−λi(M)), i = 2, . . . ,N (A.8)

where λi−1(M)−λi(M) denotes the difference of two consecutive eigenvalues of modularity matrix M
and estimated number of clusters c is equal to the index number of smaller eigenvalue in the maximum
eigengap.

B.5 Local Dominance method

Shang et al. proposed the Local Dominance[26] algorithm, designed to reveal the hidden hierarchy in
the network by utilizing local information. Local Dominance starts with calculating the degree of each
node. For a given node, a link pointing to an adjacent node is connected if the following criteria are
met: the degree of the adjacent node is greater than or equal to the original node, and the degree of the
adjacent node is the largest among all neighbors. Loops are not permitted in this process, meaning that
if a link already exists between two nodes, a second link in the opposite direction cannot be established.

Upon traversing all nodes, if any nodes possess multiple outgoing links, one is randomly preserved.
Consequently, the algorithm transforms the initial network into a collection of tree structures, with each
tree’s root node referred to as the local leader and the leaf nodes as followers. In the context of Local
Dominance, each tree represents a community. The total number of communities corresponds to the
quantity of local leaders, and a local leader, along with their followers, constitutes the members of a
community.

The time complexity of Local Dominance is linear in the number of links O(L)[26], which could be
one of the fastest community detection algorithms.

C. Pseudo-code of the Linear Clustering Process on Networks

D. SSBM benchmark

In contrast to the SSBM networks with c= 2 and c= 4 clusters, the modularity of the estimated partition
by each considered algorithm for the range of bin − bout values above the detectability limit are lower
than the modularity m of the planted partition for c = 8, as depicted in the upper right part of Figure
A.7. This trend indicates that, as the number of clusters c increases, the planted partition possesses the
highest modularity among all possible partitions on a given graph.
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FIG. A.7. The estimated number of clusters (upper left-hand figure) and estimated modularity (upper right-hand figure) in SSBM
graphs with N = 500 nodes, average degree dav = 7 and c = 8 clusters, for different values of parameters bin and bout . The
NMI and ECS measures per each clustering algorithm are provided in the lower left-hand side and lower right-hand side figures,
respectively. The vertical dashed line indicates the clustering detectability threshold.

E. LFR benchmark
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FIG. A.8. The estimated number of clusters (upper left-hand figure) and estimated modularity (upper right-hand figure) in SSBM
graphs with N = 500 nodes, average degree dav = 7 and c = 10 clusters, for different values of parameters bin and bout . The
NMI and ECS measures per each clustering algorithm are provided in the lower left-hand side and lower right-hand side figures,
respectively. The vertical dashed line indicates the clustering detectability threshold.
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FIG. A.9. The estimated number of clusters (upper left-hand figure) and estimated modularity (upper right-hand figure) in SSBM
graphs with N = 500 nodes, average degree dav = 7 and c = 20 clusters, for different values of parameters bin and bout . The
NMI and ECS measures per each clustering algorithm are provided in the lower left-hand side and lower right-hand side figures,
respectively. The vertical dashed line indicates the clustering detectability threshold.
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FIG. A.10. The estimated number of clusters (upper left) and estimated modularity (upper right) in LFR benchmark graphs with
N = 500 nodes, an average degree of dav = 12, comprising c = 5 clusters. The graphs are generated using parameters γ = 2.5 and
βl f r = 2.5 and varying the parameter µ . The lower left and lower right figures display the Normalized Mutual Information (NMI)
and Element-centric similarity (ECS) measures for each clustering algorithm.
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FIG. A.11. The estimated number of clusters (upper left) and estimated modularity (upper right) in LFR benchmark graphs with
N = 500 nodes, an average degree of dav = 12, comprising c = 10 clusters. The graphs are generated using parameters γ = 2.5
and βl f r = 2.5 and varying the parameter µ . The lower left and lower right figures display the Normalized Mutual Information
(NMI) and Element-centric similarity (ECS) measures for each clustering algorithm.
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