
International Journal of Forecasting 38 (2022) 489–504

M
a

G
b

c
C
c
t
s
m
i
o
i
a

t
l
a
r

h
0
t

Contents lists available at ScienceDirect

International Journal of Forecasting

journal homepage: www.elsevier.com/locate/ijforecast

Comparing the accuracy of several network-based COVID-19
prediction algorithms
Massimo A. Achterberg a,∗, Bastian Prasse a, Long Ma a, Stojan Trajanovski b,
aksim Kitsak a, Piet Van Mieghem a

Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, P.O. Box 5031, 2600
A Delft, The Netherlands
Microsoft Inc., 2 Kingdom St, London W2 6BD, United Kingdom

a r t i c l e i n f o

Keywords:
Epidemiology
Network inference
Forecast accuracy
Bayesian methods
SIR model
Time series methods
Machine learning methods

a b s t r a c t

Researchers from various scientific disciplines have attempted to forecast the spread of
coronavirus disease 2019 (COVID-19). The proposed epidemic prediction methods range
from basic curve fitting methods and traffic interaction models to machine-learning
approaches. If we combine all these approaches, we obtain the Network Inference-
based Prediction Algorithm (NIPA). In this paper, we analyse a diverse set of COVID-19
forecast algorithms, including several modifications of NIPA. Among the algorithms that
we evaluated, the original NIPA performed best at forecasting the spread of COVID-
19 in Hubei, China and in the Netherlands. In particular, we show that network-based
forecasting is superior to any other forecasting algorithm.

© 2020 The Author(s). Published by Elsevier B.V. on behalf of International Institute of
Forecasters. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In December 2019, SARS-CoV-2, the virus that causes
oronavirus disease 2019 (COVID-19), emerged in the
hinese province of Hubei. The number of COVID-19
ases in China rose dramatically to almost 80,000 by
he end of February 2020. From China, COVID-19 quickly
pread throughout the whole world, with almost ten
illion cases by the end of June 2020. Many countries

mposed nation-wide lockdowns to slow down the spread
f COVID-19. A reliable forecast of the pandemic outbreak
s key for targeted disease countermeasures and for the
ppropriate design of exit strategies to lift lockdowns.
Unfortunately, just as weather forecasts, the predic-

ion of epidemic outbreaks is subject to fundamental
imits (Moran et al., 2016). One aspect is the limited
vailability of data, because epidemic time series are
elatively short, and carrying out medical tests on a large
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scale is challenging. Also, the final number of infected
cases is highly sensitive to initial perturbations (Prasse,
Achterberg & Van Mieghem, 2020). Nonetheless, many
methods have been developed and applied to forecast
the spread of COVID-19. Perhaps the simplest approach
is based on fitting the number of infections to a sigmoid
curve, such as the logistic function (Roosa et al., 2020;
Verhulst, 1845), Hill function (Hill, 1910), or Gompertz
function (Gompertz, 1825). Using nonlinear regression,
the parameters of the sigmoid curve can be estimated.
For the comparison of prediction algorithms in this work,
we focus on the logistic function. The logistic function
is of particular interest, because the logistic function is
the (approximate) solution for the number of infected
cases (Van Mieghem, 2016) in the Susceptible-Infected-
Susceptible (SIS) epidemic model, and for the number of
removed cases in the Susceptible-Infected-Removed (SIR)
epidemic model (Kermack & McKendrick, 1927; Prasse,
Achterberg & Van Mieghem, 2020).

By fitting the number of infected cases to a sigmoid
curve, we implicitly assume that the spread in a particular
rnational Institute of Forecasters. This is an open access article under
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region is independent of other regions, which contrasts
with the strong interconnectedness of our modern world.
The interaction between different regions, which is due
to the movement of people, is taken into account by
network-based techniques.

The interaction can be described by a network G with
N nodes. Each node i in the network G represents a
particular region (country, province, municipality, or city),
and the link aij ∈ {0, 1} represents the existence of an
interaction from region j to region i, specified by a link
weight βij denoting the infection probability from region
j to region i. The self-infection probability within a region
i is given by βii, which we expect to be dominant over
the other infection probabilities, because the interaction
within a region is stronger than the interaction with other
regions. The N × N infection probability matrix B, with
elements βij is, however, unknown and must be derived
from past observations of the epidemic. We address this
issue in more detail in Section 2.

Throughout this work, we often use ‘‘the number of
infected cases", which we understand as ‘‘the number of
cases reported by local authorities". Asymptomatic indi-
viduals, who do not feel sick and even do not know that
they are infected and infectious, are not reported and
can infect others unwittingly. To gain an understanding
of the percentage of asymptomatic cases, one possibility
is to test the population at random with, for example,
blood tests. For COVID-19, the fraction of asymptomatic
cases is estimated to be as large as 80% (Day, 2020). Since
the number of asymptomatic cases cannot be determined
on a daily basis, we confine ourselves to the number of
reported cases in this work.

Many scientific disciplines have investigated and fore-
casted the spread of COVID-19. Statistical approaches are
commonly based on Kalman filtering (Yang, Yi et al., 2020)
or consider Bayesian approaches (Lorch et al., 2020).
Network-based approaches consider aeroplane networks,
daily commute traffic, or cell phone traffic (Chang et al.,
2020). Data scientists apply machine-learning algorithms,
like the adaptive neuro-fuzzy inference system (Al-qaness,
Ewees, Fan, & Abd El Aziz, 2020) or Long Short-Term
Memory (LSTM) (Yang, Zeng et al., 2020). Mathematicians
have performed parameter estimation on compartmen-
tal models such as the SIR model (Kergassner et al.,
2020; Yang, Zeng et al., 2020) or the Susceptible-Exposed-
Infected-Removed (SEIR) model (He, Peng, & Sun, 2020).

Most epidemic models forecast the number of infected
cases as a point forecast (generally: the mean of a dis-
tribution) rather than a complete distribution. All models
in this work were designed to provide point forecasts,
but can be generalised to provide prediction intervals. We
discuss this topic further in Section 2.

The focus of this work is the comparison of a diverse
set of methods for forecasting the spread of COVID-19,
ranging from fitting closed-form epidemic curves and
comprehensive machine-learning algorithms to network-
based approaches. We focus on the spread of COVID-19,
but we emphasise that all methods can be applied to
general epidemic outbreaks. We show that pure
machine-learning and network-agnostic algorithms or
epidemiological models are inferior to algorithms that
490
combine multiple approaches and rely on the underlying
network topology. In particular, the Network Inference-
based Prediction Algorithm (NIPA) is superior to any other
algorithm that we evaluated. In Section 2, we explain
eight forecast algorithms for predicting the future number
of COVID-19 cases. In Section 3, we demonstrate their per-
formance in two selected regions—Hubei, China and the
Netherlands—and discuss the strengths and weaknesses
of each algorithm. Finally, we summarise our findings in
Section 4.

2. Prediction algorithms

The spread of COVID-19 can be measured in terms of
the daily number of reported cases. We model the course
of the epidemic with an SIR compartmental model, where
each individual is either susceptible (healthy), infected
(can infect the susceptible), or removed (recovered or
died). We denote the (discrete) time by k = 1, . . . , n,
where n is the total number of observation days. The first
COVID-19 case was reported on day k = 1. Given that
nearly all governments report their epidemic data once a
day, we take a time step of one day as a natural choice and
investigate the effect of the time step on the prediction
accuracy in Appendix G. The SIR epidemic model with
time-varying spreading parameters is given by:

Definition 1 (SIR Epidemic Model (Kermack & McKendrick,
927; Prasse & Van Mieghem, 2020a; Youssef & Scoglio,
011)). The viral state vi[k] = (Si[k], Ii[k],Ri[k])T of

region i evolves in discrete time k = 1, 2, . . . , n according
o

Ii[k+ 1] = (1− δi)Ii[k] + (1− Ii[k] −Ri[k])

×

N∑
j=1

βij[k]Ij[k], (1)

i[k+ 1] = Ri[k] + δiIi[k], (2)

nd the fraction of susceptible individuals follows as

i[k] = 1− Ii[k] −Ri[k]. (3)

ere, βij[k] ≥ 0 denotes the infection probability from
egion j to region i at time k, and δi > 0 denotes the curing
robability of region i.

The spread of COVID-19 cannot be described exactly
y the SIR equations 1, (2) and (3). The COVID-19 pan-
emic evolves in continuous time, whereas the SIR model
volves in discrete time, with a time step of one day. Ad-
itionally, the SIR model is unable to describe phenomena
ike personal social distancing, nation-wide lockdowns,
nd the availability of vaccinations. Each of these model
ssumptions introduces model errors. Prior to the intro-
uction of several forecasting algorithms, we explain how
odel errors can be used to obtain prediction intervals for

he forecasted number of infected cases.
As described in Prasse, Achterberg, Ma and Van

ieghem (2020), we obtain the fraction of susceptible
i[k], infectious Ii[k], and removed Ri[k] individuals in
egion i from the observed infections yi[k]. We aim to find
he best possible forecast ŷi[k] for the cumulative number
f infected cases yi[k] for region i and time k. In this work,
e discuss eight prediction methods.
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2.1. Potential generalisation to prediction intervals

Before introducing the different prediction methods,
e emphasise that this work focuses on short-term point

orecasts. Long-term epidemic behaviour is very random,
nd providing forecast intervals is essential to give a com-
lete picture of the long-term viral spread (Cirillo & Taleb,
020). Extending the point forecast methods in this work
o prediction intervals is outside the scope of this work.
onetheless, we consider it valuable to conceptually dis-
uss an extension of the SIR equation (1) to allow for the
omputation of prediction intervals. A real epidemic does
ot follow the SIR model (1) exactly. Instead, the infection
tate Ii[k] evolves from time k to k+ 1 as

i[k+ 1] = (1− δi)Ii[k] + (1− Ii[k] −Ri[k])

×

N∑
j=1

βij[k]Ij[k] + wi[k], (4)

here wi[k] denotes the model error of region i at time k;
ee also Appendix A. Equation (4) can be used as a basis
or prediction intervals with a Monte Carlo approach. We
efine the N×1 error vector as w[k] = (w1[k], . . . , wN [k])T

and the N×1 infection vector as I[k] = (I1[k], . . . , IN [k])T
for all times k. Then, based on Eq. (4), past observa-
tions I[1], . . . , I[n], and errors w[1], . . . , w[n − 1], the
point forecast algorithms provide an estimate of the viral
state I[k] at future times k > n.

Conceptually, a prediction interval for the future viral
state Ii[k] can be obtained in two steps. First, we ob-
tain random samples from the distribution of the model
errors w[1], . . . , w[n − 1]. Second, for each sample of
errors w[1], . . . , w[n − 1], we obtain a point forecast of
the future viral states I[k]. The prediction intervals for the
future viral state I[k] can be obtained from the ensemble
of point forecasts.

The details of the outlined method for obtaining pre-
diction intervals are beyond the scope of this paper. Two
particular challenges are the determination of the distri-
bution of the model errors w[k] and the implementation
of a computationally efficient sampling method.

2.2. Sigmoid curves

The logistic function is a well-known example of an
epidemiological sigmoid curve (Van Mieghem, 2016; Ver-
hulst, 1845). We assume the cumulative number of in-
fected cases yi[k] in region i at time k to follow a logistic
function:

yi[k] =
y∞,i

1+ e−Ki(k−t0,i)
, (5)

where y∞,i is the long-term fraction of infections, Ki is
the logistic growth rate, and t0,i is the inflection point,
also known as the epidemic peak. The parameters y∞,i,
Ki, and t0,i are estimated for each region separately using
a nonlinear curve fitting procedure, which is explained in
Appendix F. Other sigmoid curves, like the Hill function
and Gompertz function, are also discussed in Appendix F.
491
2.3. Long short-term memory

Recurrent neural networks (Elman, 1990) (RNNs) have
been used in various tasks related to sequences (Good-
fellow, Bengio, & Courville, 2016), time series analysis
and forecasting, speech recognition or natural language
processing (Young, Hazarika, Poria, & Cambria, 2018), and
they have been demonstrated to achieve state-of-the-art
performance. LSTM networks (Hochreiter & Schmidhu-
ber, 1997) are specific types of RNNs that resolve the
long-standing problem of long-term dependencies. LSTM
introduces additional input, output, and optional forget
gates as interfaces with additional weights on the top of
standard input data and hidden weights in the standard
RNN unit. There are several variations (Gers & Schmid-
huber, 2001; Gers, Schmidhuber, & Cummins, 2000) of
LSTM networks, such as LSTMs with or without a forget
gate and a ‘‘peephole connection", (Jozefowicz, Zaremba,
& Sutskever, 2015). For the internal mechanism between
the gates and the exact mathematical relations, we refer
the reader to Gers et al. (2000) or Yu, Si, Hu, and Zhang
(2019). Here, we utilise the most common mechanism—
an LSTM with a forget gate. In the simulations, we use an
LSTM with sequence and hidden sizes both equal to four
in a single LSTM layer (e.g., it is possible to stack a few
LSTM layers, which leads to more overfitting), a learning
rate of 0.1, and the Adam optimiser (Kingma & Ba, 2014),
with mean squared error loss in 2000 epochs of training.

2.4. Network inference-based prediction algorithm (NIPA)

Network-based approaches take into account the in-
teractions between different regions. However, the con-
tact network G is unknown (and consequently also the
infection probability matrix B) and must be inferred from
the epidemic outbreak. NIPA was originally proposed in
Prasse and Van Mieghem (2020a), and an adaption of
NIPA was applied to the spread of COVID-19 in Hubei,
China (Prasse, Achterberg, Ma et al., 2020) and Italy (Piz-
zuti, Socievole, Prasse, & Van Mieghem, 2020). NIPA con-
sists of two steps. First, the underlying infection matrix B
is inferred from the epidemic outbreak. Second, the infec-
tion matrix B and the estimated curing rates δi for node
i are used to forecast the outbreak by iterating the SIR
model on the estimated infection matrix B. Even though
NIPA successfully forecasted the spread of COVID-19 in
the Chinese province of Hubei, the underlying infection
matrix B could not be inferred (Prasse & Van Mieghem,
020b).

.5. NIPA applied to each region separately

As a benchmark model, we apply NIPA to each region
eparately, which we name NIPA separate. NIPA separate
s a machine-learning method based on the SIR model,
ut it does not consider the interaction between different
egions.
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Table 1
All algorithms discussed in this paper. *If the algorithm is based on
a phenomenological epidemic process, like the SIR model. **If the
algorithm is able to forecast small perturbations in the global trend.
***If the spread between different regions is considered.
Algorithm Epidemiology* Adaptive** Network***

NIPA ✓ ✓ ✓
NIPA separate ✓ ✓ ×

NIPA static prior ✓ ✓ ✓
NIPA dynamic prior ✓ ✓ ✓
Logistic function ✓ × ×

Hill function ✓ × ×

Gompertz function ✓ × ×

LSTM × ✓ ×

2.6. NIPA static prior

The formulation of NIPA can be extended to include
nowledge of the underlying contact network. We use a
ime-independent traffic network (with the correspond-
ng traffic intensity matrix M) to obtain a prior for the
nfection probability matrix B as

Bprior = diag (c1, . . . , cN)M. (6)

We explain our motivation for the prior infection matrix
Bprior in Appendix B. The positive scalars c1, . . . , cN are
unknown and are set by cross-validation. We assume
that the true infection matrix B is normally distributed
around the prior infection matrix Bprior. Based on the prior
infection matrix Bprior and observations of the spread of
COVID-19, we obtain the Bayesian estimate Bposterior by
solving the optimisation problem

Bposterior = argmax
B

Pr
[
B
⏐⏐y[1], . . . , y[n]] (7)

s.t.
N∑
j=1

βij ≤ 1, i = 1, . . . ,N,

where y[k] is the observed N × 1 infection vector y[k] =
(y1[k], . . . , yN [k])T at all times k = 1, . . . , n. Using the
stimated infection matrix Bposterior and the estimated cur-
ng rates δi for region i, we forecast the outbreak by
terating the SIR model. For details on NIPA static prior,
ee Appendix C.

.7. NIPA dynamic prior

During the COVID-19 pandemic, many countries have
mposed some kind of lockdown, in which the free move-
ent of people is significantly restricted. Thus, the true
ontact network G is not static but varies over time. We
se a time-varying traffic matrix M[k] as an approxima-
ion for the prior infection matrix Bprior[k], whose entries
qual

prior[k] = diag (c1, . . . , cN)M[k] (8)

or all times k. The positive scalars c1, . . . , cN are un-
nown and are set by hold-out validation. We propose
Bayesian approach called NIPA dynamic prior to esti-
ate the true infection matrix B[k] from the time se-

ies of infected cases y [k] and the prior infection matrix
i

492
prior[k]. Using the estimated time-varying infection ma-
rix Bposterior[k] and the curing rates δi for each region
, we forecast the outbreak by iterating the SIR model.
ppendix D explains the technical details of NIPA dy-
amic prior.
One challenge to NIPA dynamic prior is the unavail-

bility of the contact network in the future. Hence, we
ssume that the traffic matrix will remain constant after
he last observation point n: Bprior[n+k] = Bprior[n] for all
> 0. We summarise all prediction algorithms in Table 1.

. Evaluation of the prediction performance

We evaluate the prediction accuracy of the methods
iscussed in Section 2 by forecasting the spread of COVID-
9 in a selected number of regions. We set the maximal
orecast horizon to six days, because of the difficulty of
redicting epidemic outbreaks (Prasse, Achterberg & Van
ieghem, 2020).
Each prediction algorithm produces a forecast ŷi[k] for

he cumulative number of infected cases yi[k] for region
at time k. To quantify the prediction error at time k,
e use the symmetric mean absolute percentage error
sMAPE)

sMAPE[k] =
1
N

N∑
i=1

|yi[k] − ŷi[k]|
(yi[k] + ŷi[k])/2

, (9)

hich is commonly used in forecasting (Hyndman &
oehler, 2006). Furthermore, we quantify the percentage
rror (PE) as follows:

PE,i[k] =
yi[k] − ŷi[k]

yi[k]
, (10)

for region i and time k to investigate over- and under-
estimations. We consider the spread of COVID-19 in two
regions: the cities in Hubei, China, and the provinces in
the Netherlands. These regions cannot be regarded as
full representatives of the spread of COVID-19, let alone
general infectious diseases. Rather, these regions illustrate
the strengths and weaknesses of our methods.

3.1. Hubei, China

We evaluate the prediction accuracy first in the Chi-
nese province Hubei. In December 2019, the first cases of
COVID-19 were detected in Wuhan, the capital of Hubei.
The first case outside Wuhan was reported on January
21. From January 24 onwards, the whole province Hubei
was under lockdown, prohibiting any non-urgent travel.
On February 15, the local government in Hubei changed
the diagnosing policy, causing an erratic increase in the
number of reported cases on February 15. Therefore, we
restrict ourselves to the period from January 21 to Febru-
ary 14. The reported cases are provided by the Health
Commission of Hubei (2020). The majority of COVID-19
patients were reported in Wuhan, as shown in Fig. 1.
We removed the region Shennongjia from our analysis,
because of the small number of infections in that region.

For NIPA static prior, we require a traffic network
describing the interactions between the cities in Hubei.
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Fig. 1. The figure on the left shows a geographical map of Hubei. The darker the city, the more infections per 100,000 inhabitants on February 14.
he three cities with the most infections on February 14 are displayed on the right.
he Chinese company Baidu provides an estimate of the
umber of commuters between all cities in Hubei on a
aily basis (Baidu Migration website, 2020). The static
rior is set proportional to the traffic network on January
1, which corresponds to day k = 1.
Fig. 2 shows the prediction accuracy over time for

ifferent forecast algorithms. The horizontal axis shows
he date d. We forecasted the disease several days ahead,
using all available information from January 22 until d. For
example, the right-most point in Fig. 2(a) includes data
from January 22 to February 13 to forecast the situation
on February 14.

The sMAPE error in Fig. 2 tends to decrease as time
evolves, because a growing amount of data is available.
Furthermore, the total number of infected cases quickly
increases, whereas the daily infected cases increase at a
lower rate, indicating sub-exponential growth (Maier &
Brockmann, 2020; Prasse, Achterberg & Van Mieghem,
2020). Sub-exponential growth will inevitably reduce the
sMAPE error, because sMAPE is a relative error metric. On
the other hand, the prediction accuracy decreases rapidly
if the forecast horizon is enlarged. In particular, the num-
ber of cases five and six days ahead around February 1
cannot be predicted accurately, which is illustrated by
Figs. 2(e) and 2(f), respectively.

In general, the logistic function performs worse than
the other algorithms. There may be several reasons for
this. First, by fitting a logistic curve, we assume the num-
ber of cases to follow the SIR model closely (Kermack &
McKendrick, 1927; Prasse, Achterberg & Van Mieghem,
2020). Hence, we do not allow any individual or govern-
mental responses to COVID-19, which typically flattens
the (logistic) curve. Second, the logistic function ignores
the spread between regions, which further deteriorates
the prediction accuracy. Third, the logistic function is
symmetric around the epidemic peak at k = t0; the
ncrease and decrease in the number of cases around
he peak is equal. Most epidemic outbreaks of COVID-19
how a rapid increase and a more gradual decrease in the
aily number of cases. A possible reason for this is that
ost lockdowns are enforced immediately, whereas lock-
own measures are lifted gradually. Occasionally, the Hill
unction (Hill, 1910) and Gompertz function (Gompertz,
825) are used to predict epidemic outbreaks, because
hey allow asymmetry around the epidemic peak. In this
493
work, we focus on the logistic function because of its
relation to the solution of the SIR and SIS models, and
we discuss the Hill function and the Gompertz function
in Appendix F.

The performance of LSTM is fairly good, but LSTM fails
to find an accurate forecast around January 31. Since the
time series is the shortest at the left-most part of Fig. 2,
less data is available to train the LSTM. Pure machine-
learning algorithms are known to yield a lower predic-
tion accuracy than other methods if the time series is
short (Makridakis, Spiliotis, & Assimakopoulos, 2020).

The prediction accuracy of all NIPA methods in Fig. 2 is
similar, although NIPA static prior is considerably worse
around February 4 for predictions of three or more days
ahead. A possible reason is that the impact of the nation-
wide lockdown on January 24 is captured incorrectly by
the static prior, whereas the original NIPA
method has more freedom to adjust its contact network
accordingly and NIPA dynamic prior receives a more tai-
lored, time-varying prior during the lockdown situation.
Another reason is that the prior network (dynamic or
static) may deviate significantly from the true infection
matrix. Under ideal circumstances, namely when the epi-
demic outbreak exactly follows the SIR model, we show
that NIPA static prior outperforms NIPA in Appendix E.

Fig. 2 also shows that the negligence of the network
interaction by the NIPA separate model decreases the
prediction accuracy compared to NIPA. Hence, a network-
based approach appears beneficial for forecasting. We
summarise the results in Section 4.

Another interesting topic is forecast bias: the tendency
to systematically overestimate or underestimate the true
number of infected cases. Using the Percentage Error (PE),
we estimate the bias for all prediction algorithms for
region i at time k. The surface error plots in Fig. 3 show the
PE as a function of time for a four-days-ahead prediction.
The logistic function and LSTM show the largest deviation
around the mean, especially around February 1, which is
in agreement with Fig. 2. Furthermore, Fig. 3 illustrates
that the logistic function and LSTM systematically under-
estimate the true number of cases. On the other hand,
NIPA static prior appears to overestimate the true number
of cases. A possible reason for this is the following. The
static network is taken to be proportional to the traffic
flow before the lockdown measures. When a lockdown
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Fig. 2. Prediction accuracy for the situation in Hubei, China. The subfigures show the prediction accuracy for a forecast horizon of (a) one day, (b)
wo days, (c) three days, (d) four days, (e) five days, and (f) six days for the prediction algorithms from Section 2.
s introduced, the static prior remains constant, so the
lgorithm overestimates the true result. After some time,
he newly collected data shows evidence that the prior is
ot very accurate, so NIPA static prior ignores the prior
nd uses the data instead, which improves the forecast
ccuracy again.

.2. The Netherlands

As a second case study, we regard the spread of COVID-
9 in the Netherlands. The first patient, who had visited
taly the week before, was diagnosed on February 27.
fter February 27, the number of cases grew rapidly, as
epicted in Fig. 4. The epidemic peak was observed at
he end of March, and the daily number of cases subse-
uently dropped. We consider the spread of COVID-19 at a
rovincial level, for which data is available from the Dutch
ational Institute for Public Health and the Environment,
alled RIVM (RIVM, 2020). The Netherlands is subdivided
nto 12 provinces, for which the RIVM reports the daily
umber of new infections. Since the number of infected
ases increased more gradually in the Netherlands than in
ubei, China, the total epidemic period is longer and more
494
data points are available. A more gradual increase in the
number of cases should be beneficial for the prediction
accuracy.

For NIPA static prior, we require a traffic network as an
approximation for the interaction between the provinces.
Statistics Netherlands (Centraal Bureau voor de Statistiek)
reports the number of people mij working in province
i and living in province j, averaged over one year (CBS,
2018). We use the Google Mobility Data ‘‘Workplaces"
to estimate the time-varying traffic network for each
province in the Netherlands (Google LLC, 2020). Google
reports the percentage decrease of traffic pi[k] on day k in
province i compared to an ordinary day between January
3 and February 6, 2020. During the lockdown, we expect
pi[k] < 1 because of the lockdown measures. Then, we
construct the time-dependent traffic matrix as follows:
mij[k] = mij · pi[k].

The prediction accuracy for the Netherlands is outlined
in Fig. 5. Before April 1, the situation in the Netherlands
is similar to Hubei, where the NIPA methods perform
the best, but there are large deviations in the prediction
accuracy. After April 1, the accuracy of the NIPA methods

is nearly identical to each other. In other words, the
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Fig. 3. Surface error plots for four-days-ahead forecasts versus time. The subfigures show (a) NIPA, (b) NIPA separate, (c) NIPA static prior, (d) NIPA
dynamic prior, (e) logistic function, and (f) LSTM.
Fig. 4. The figure on the left shows a geographical map of the Netherlands. The darker the province, the more infections per 100,000 inhabitants
on May 19. The four provinces with the most infections on May 19 are displayed on the right.
influence of the initial static/dynamic network on the
prediction is small. The main reason for this is that the
NIPA algorithms are trained on a growing amount of in-
fection data as time advances. Among the best performing
methods over the whole period are original NIPA and
495
NIPA separate, whereas the logistic function and LSTM
show the worst performance.

The prediction accuracy of NIPA separate and NIPA are
comparable, except at the left-hand side of Fig. 5. A pos-
sible reason for this is that the spread of the coronavirus
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r
s

Fig. 5. Prediction accuracy for the situation in the Netherlands. The subfigures show the prediction accuracy (a) one day ahead, (b) two days ahead,
(c) three days ahead, (d) four days ahead, (e) five days ahead, and (f) six days ahead.
Table 2
The performance of all algorithms discussed in this paper. The Netherlands is abbreviated as NL. *As input, each algorithm
requires the population size Ni of each region i and a time series of the infected cases yi[k] in each region i at any time k.
Algorithm Additional input* Error (Hubei) Error (NL) Bias

NIPA – 0.122 0.0381
NIPA separate – 0.129 0.0487
NIPA static prior Static traffic network 0.135 0.0384 Over
NIPA dynamic prior Dynamic traffic network 0.129 0.0429
Logistic function – 0.186 0.0735 Under
Hill function – 0.142 0.0531
Gompertz function – 0.141 0.0528
LSTM – 0.160 0.0570 Under
was initially dominated by interprovincial interactions.
After imposing the lockdown at the end of March, the
interaction between provinces decreased significantly, so
the spread of the coronavirus mainly took place within
each province.

4. Conclusion

We compared the prediction accuracy of eight algo-
ithms designed to forecast the spread of COVID-19. We
ummarise the results in Table 2. The error in Table 2
496
was obtained by averaging over all sMAPE forecast errors
for forecast horizons between one and six days. Fitting
a sigmoid curve, like the logistic function, performed the
worst among the methods considered. The main reasons
for the low prediction accuracy are the imposed symme-
try around the epidemic peak and the negligence of the
interaction between regions. Other sigmoid curves, such
as the Hill function and the Gompertz function, performed
slightly better than the logistic function, but performed
worse than most other algorithms. The LSTM machine-
learning algorithm is not based on any phenomenological
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epidemic processes, nor does it consider provincial in-
teractions. Table 2 shows that the prediction accuracy of
LSTM is comparable to the Hill and Gompertz functions.

The Network Inference-based Prediction Algorithm
NIPA) is a combination of machine learning and phe-
omenological epidemiology (SIR model), and it considers
he interaction between different regions. Table 2 illus-
rates that the prediction accuracy of NIPA is better than
hat of any other algorithm. Applying NIPA for each re-
ion separately (NIPA separate) yielded a forecast error
omparable to that of LSTM. We thus conclude that a
etwork-based approach is beneficial for accurate fore-
asts. We also showed that choosing a time-varying or
tatic prior close to the true contact network may improve
he forecast accuracy of NIPA. Surprisingly, the inclusion
f a time-varying or static prior in NIPA on real infec-
ion data does not improve the forecast accuracy for the
onsidered regions. Among several reasons, the chosen
rior might be an inaccurate estimate of the true contact
etwork.
In a practical setting, such as the current COVID-19

andemic, policymakers might prefer to anticipate to
orst-case prediction of the number of infected cases.

n that case, an asymmetric error metric that penalises
nderestimations more significantly than overestimations
ay be more suitable.
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ppendix A. SIR epidemic model

The SIR epidemic model is defined in Definition 1.
he COVID-19 pandemic does not exactly follow the SIR
pidemic model. Instead, at any time k, the fraction of

COVID-19 infections in region i obeys

Ii[k+1] = (1− δi) Ii[k]+Si[k]
N∑
j=1

βij[k]Ij[k]+wi[k]. (A.1)

Here, wi[k] denotes the model error of region i at time k.
nder Assumption 2, the model errors wi[k] are identi-
ally distributed at any time k and for any region i:

ssumption 2. The model error wi[k] is normally dis-
ributed as

i[k] ∼ N
(
0, σ 2

w

)
. (A.2)

urthermore, the model errors wi[k], wj[k̃] are stochasti-
ally independent for all times k ̸= k̃ and regions i ̸= j.

ssumption 3. For any node i, the curing probabili-
ies satisfy δi ≤ 1, and, at time k ∈ N, the infection
robabilities βij[k] satisfy
N

j=1

βij[k] ≤ 1. (A.3)
497
Under Assumption 3, the fractions Si[k], Ii[k], and
i[k] remain in [0, 1] at any time k, as stated by Lemma 4,
hich is inspired by Paré, Liu, Beck, Kirwan, and Başar
2020, Lemma 1) and has been proved for time-invariant
nfection probabilities βij in Prasse, Achterberg, Ma et al.
2020).

emma 4 (Prasse, Achterberg, Ma et al., 2020). Suppose that
i[1] ≥ 0, Ri[1] ≥ 0 and Ii[1] +Ri[1] ≤ 1 for any node i.
hen, under Assumption 3, it holds that Ii[k] ≥ 0, Ri[k] ≥ 0
nd Ii[k] +Ri[k] ≤ 1 at any time k ∈ N for any node i.

roof. We prove Lemma 4 by induction. Suppose that at
ime k for any node i it holds that

i[k] ≥ 0 (A.4)

nd

i[k] ≥ 0 (A.5)

nd

i[k] +Ri[k] ≤ 1. (A.6)

nder Assumption 3, it holds that 0 ≤ δi ≤ 1 and βij ≥ 0.
hus, we obtain from the SIR governing equation (1) and
A.6) that both Ii[k + 1] and Ri[k + 1] equal a sum of
ositive addends, which implies that

i[k+ 1] ≥ 0 (A.7)

nd

i[k+ 1] ≥ 0. (A.8)

urthermore, we obtain for any node i that

i[k+ 1] +Ri[k+ 1] = Ii[k] +Ri[k]

+ (1− Ii[k] −Ri[k])
N∑
j=1

βij[k]Ij[k]. (A.9)

rom (A.4), (A.5), and (A.6), we obtain that Ii[k]+Ri[k] ∈
0, 1]. Since (A.5) and (A.6) imply that Ii[k] ≤ 1, it holds
hat
N

j=1

βij[k]Ij[k] ≤ 1 (A.10)

nder Assumption 3. Thus, Ii[k+1]+Ri[k+1] ≤ 1, since
he right side of (A.9) is a convex combination of 1 and

N
j=1 βij[k]Ij[k] ∈ [0, 1]. □

ppendix B. Motivation for the static and dynamic
rior

We intend to give a short motivation for the static
rior in Eq. (6). Suppose that each individual has on
verage ⟨d⟩ contacts (here, ⟨·⟩ denotes the average) in
he population. If a person is infected and that person’s
eighbours are healthy, the person can infect any of its
eighbours independently with probability p. Hence, the
otal number of infections follows a Binomial distribution

Pr[m] =
(
⟨d⟩

)
pm(1− p)⟨d⟩−m. (B.1)
m
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In case ⟨d⟩ is large and λ ≡ p⟨d⟩ is small, we can
pproximate (B.1) by a Poisson distribution

r[m] = e−λ λm

m!
. (B.2)

If there are N visiting, infected individuals that may all
infect the population independently, the resulting distri-
bution is the sum of independent, identically distributed
Poisson distributions, which is again a Poisson distribu-
tion with ⟨m⟩ = Nλ.

We denote the number of people living in region j
and travelling for work to region i by mij. Each individ-
ual has ⟨d⟩ contacts and can infect each individual with
probability p. Then, region j has on average mij⟨d⟩p new
infections, provided that no two individuals who visit
the same region j have contact with the same people. In
particular, the fraction of new infections that region i gets
from region j is given by

βij =
mij⟨d⟩p

Ni
. (B.3)

f we define ci = ⟨d⟩pNi
, we obtain Eq. (6).

ppendix C. Details on NIPA static prior

We assume that the infection matrix B is normally
distributed around the prior Bprior, whose elements equal
bprior,ij = cimij:

Assumption 5. Every non-diagonal element βij, where
i ̸= j, of the matrix B is normally distributed as

Pr
[
βij

]
=

⎧⎪⎪⎨⎪⎪⎩
αi

1
√
2πσi

exp
(
−

1
2σ2

i

(
βij − cimij

)2)
if 0 ≤ βij ≤ 1,

0 otherwise.

(C.1)

ere, ci denotes the proportionality constant, and the con-
tant αi is set such that

R
Pr

[
βij

]
dβij = 1. (C.2)

The normal distribution (C.1) is cut off for values out-
ide of the interval [0, 1], since the infection probability
ij cannot be outside the interval [0, 1]. The standard
eviation σi is a measure of the accuracy of the prior
istribution (C.1). Both the proportionality constant ci and
he standard deviation σi are unknown. Assumption 5
implies that the diagonal elements βii of the matrix B are
uniformly distributed in the interval [0, 1].

We obtain the estimate Bposterior of the contact network
by a Bayesian (or maximum a posteriori) approach. Given
the observed N × 1 infection vector I[k] = (I1[k], . . . ,
IN [k])T at all times k = 1, . . . , n, we pose the optimisation
problem

Bposterior = argmax
B

Pr
[
B
⏐⏐I[1], . . . , I[n]] (C.3)

s.t.
N∑
j=1

βij ≤ 1, i = 1, . . . ,N.
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With the constraint in (C.3), we ensure that the predic-
tions of the infections satisfy 0 ≤ Ii[k] ≤ 1; see Lemma 4
in Appendix A. We define the (n − 1) × 1 vector Vi and
the (n − 1) × N matrix Fi as follows (Prasse, Achterberg,
Ma et al., 2020):

Vi =

⎛⎜⎝ Ii[2] − (1− δi)Ii[1]
...

Ii[n] − (1− δi)Ii[n− 1]

⎞⎟⎠ (C.4)

nd

i =

⎛⎜⎝ Si[1]I1[1] ... Si[1]IN [1]
...

. . .
...

Si[n− 1]I1[n− 1] ... Si[n− 1]IN [n− 1]

⎞⎟⎠ .

(C.5)

e obtain the Bayesian estimate Bposterior by solving a
onstrained linear least-squares problem. Proposition 6 is
n adaptation of the Bayesian interpretation in Prasse and
an Mieghem (2020b).

roposition 6. Under Assumptions 2 and 5, the Bayesian
stimation problem (C.3) is equivalent to solving the optimi-
ation problem

min
βi1,...,βiN

Vi − Fi

⎛⎜⎝βi1
...

βiN

⎞⎟⎠

2

2

+ ρi

N∑
j=1,j̸=i

(
βij − cimij

)2
s.t. 0 ≤ βij ≤ 1, j = 1, . . . ,N,

N∑
j=1

βij ≤ 1,

(C.6)

or any region i, where the penalisation parameter equals
i = σ 2

w/σ 2
i .

roof. The objective function of the optimisation problem
C.3) is equivalent to

ˆ = argmax
B

log (Pr [B])+
n∑

k=2

log
(
Pr

[
I[k]

⏐⏐I[k− 1], B
])

.

(C.7)

In the following, we rewrite the two terms in (C.7). First,
with (C.1), it holds that

log (Pr [B]) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑N
i=1

∑N
j=1 log (αi)

− log
(√

2πσi

)
−

1
2σ 2

i

(
βij − cimij

)2
if 0 ≤ βij ≤ 1 ∀i, j,

−∞ otherwise.

(C.8)

Neither the term log (αi) nor the term log
(√

2πσi

)
de-

pend on the matrix B. Furthermore, the prior log Pr [B]
( )
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is finite only if 0 ≤ βij ≤ 1 for all regions i, j. Thus, the
optimisation problem (C.7) is equivalent to

B̂ = argmax
B

N∑
i=1

N∑
j=1

−
1

2σ 2
i

(
βij − cimij

)2
+

n∑
k=2

log
(
Pr

[
I[k]

⏐⏐I[k− 1], B
])

s.t. 0 ≤ βij ≤ 1, i = 1, . . . ,N,

j = 1, . . . ,N.

(C.9)

econd, since the model errors wi[k] are stochastically
ndependent for different regions i, we can rewrite the
econd term in the objective of (C.9) as

log
(
Pr

[
I[k]

⏐⏐I[k− 1], B
])

=

N∑
i=1

log
(
Pr

[
Ii[k]

⏐⏐I[k− 1], B
])

(C.10)

=

N∑
i=1

log (Pr [wi[k] = ∆i[k]]) , (C.11)

where the second equality follows from (A.1), and by
defining

∆i[k] = Ii[k]−(1− δi) Ii[k−1]+Si[k−1]
N∑
j=1

βijIj[k−1].

(C.12)

nder Assumption 2, the model error wi[k] follows the
ormal distribution. Thus, it holds that

log (Pr [wi[k] = ∆i[k]]) = − log
(√

2πσw

)
−

1
2σ 2

w

∆2
i [k].

(C.13)

he term log
(√

2πσw

)
is independent of the matrix B.

hus, it follows from (C.10) and (C.13) that the second
erm in the objective of (C.9) can be replaced by

N

i=1

n∑
k=2

1
2σ 2

w

∆2
i [k] =

N∑
i=1

1
2σ 2

w

Vi − Fi

⎛⎜⎝βi1
...

βiN

⎞⎟⎠

2

2

, (C.14)

where the equality follows from the definition of the
vector Vi and the matrix Fi in (C.4) and (C.5), respectively.
Hence, the optimisation problem (C.9) becomes

B̂ = argmin
B

N∑
i=1

1
2σ 2

w

Vi − Fi

⎛⎜⎝βi1
...

βiN

⎞⎟⎠

2

2

+

N∑
i=1

1
2σ 2

i

N∑
j=1

(
βij − cimij

)2
s.t. 0 ≤ βij ≤ 1, i = 1, . . . ,N,

j = 1, . . . ,N.

(C.15)

he problem (C.15) can be optimised independently for
ny region i. Thus, we obtain, after multiplication with
499
σ 2
w , the equivalent optimisation problem for any region

i as

min
βi1,...,βiN

Vi − Fi

⎛⎜⎝βi1
...

βiN

⎞⎟⎠

2

2

+
σ 2

w

σ 2
i

N∑
j=1

(
βij − cimij

)2
s.t. 0 ≤ βij ≤ 1, j = 1, . . . ,N.

(C.16)

By identifying ρi = σ 2
w/σ 2

i , we obtain that (C.16) with the
constraint

∑N
j=1 βij ≤ 1 is equivalent to the constrained

linear least-squares problem (C.6). □

The first term in the objective of (C.6) measures the fit
to the observed epidemic data. The second term measures
the deviation of the infection rates βij from the prior (C.1).
The scalar parameter ρi balances the two terms: if the
prior (C.1) is very accurate or the model errors wi[k] are
large, then ρi should be large. The optimal value of the
parameter ρi is equivalent to the ratio of the unknown
variances σ 2

w and σ 2
i of the model errors wi[k] and the

prior (C.1), respectively. The optimisation problem (C.6)
is convex and can be solved efficiently (Boyd & Vanden-
berghe, 2004). To obtain the solution to (C.6) numerically,
we make use of the Matlab command lsqlin. We stress
the similarity of the optimisation problem (C.6) to the
least absolute shrinkage and selection operator (LASSO) of
Tibshirani (Tibshirani, 1996), which is the basis of NIPA
without prior (Prasse, Achterberg, Ma et al., 2020). Instead
of the second least-squares term in the objective of (C.6),
LASSO considers the ℓ1-norm penalisation term

ρi

N∑
j=1,j̸=i

⏐⏐βij
⏐⏐ . (C.17)

In fact, NIPA without prior can also be interpreted as a
Bayesian estimation approach (Prasse & Van Mieghem,
2020b).

C.1. Pseudocode

To solve the optimisation problem (C.6) for the infec-
tion rates βi1, . . . , βiN , we must specify three unknown
variables. First, we must specify the curing rate δi of
region i, which determines the fractions Si[k] and Ri[k] of
susceptible and recovered individuals, respectively
(Prasse, Achterberg, Ma et al., 2020). Second, we must
specify the parameter ρi. Third, the proportionality con-
stant ci of the prior (C.1) is also unknown. We perform
cross-validation to set the three unknown variables δi,
ρi, ci.

NIPA static prior is similar to NIPA without prior, ex-
cept for two alterations. First, we solve the constrained
linear least-squares problem (C.6) instead of LASSO. Sec-
ond, in addition to the parameter ρi and the curing rate
δi, for Bayesian NIPA there is one more unknown vari-
able, namely the proportionality constant ci, which is a
parameter of the prior distribution (C.1). To determine
the constant ci, we consider 50 logarithmically equidistant
candidate values in the set Ψ = {cmin, . . . , cmax}. The
minimal and the maximal values are set to c = 0.01
min
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and cmax = 100, respectively. We set the value of ci by
ross-validation. To obtain the epidemic outbreak predic-
ion of Bayesian NIPA, we execute (Prasse, Achterberg, Ma
t al., 2020, Algorithm 1), where (Prasse, Achterberg, Ma
t al., 2020, Algorithm 2) is replaced by Algorithm 1 stated
elow.

Algorithm 1 NIPA static prior

1: Input: curing probability δi; viral state vi[k] for k =
1, ..., n; infection state vector I[k] for k = 1, ..., n

2: Output: infection probability estimates
βi1(δi), ..., βiN (δi); mean squared error MSE(δi)

3: Compute Vi and Fi
4: ρmax,i ← 2∥F T

i Vi∥∞

5: ρmin,i ← 10−4ρmax,i
6: Θi ← 100 logarithmically equidistant values from

ρmin,i to ρmax,i
7: Ψ ← 50 logarithmically equidistant values from

cmin = 0.01 to cmax = 100
8: for ρi ∈ Θi do
9: for ci ∈ Ψ do
0: estimate MSE(δi, ρi, ci) by three-fold cross-

validation on Fi, Vi and solving (C.6) on the respective
training set

1: end for
2: end for
3: (ρopt,i, copt,i)← argmin

ρi∈Θi,ci∈Ψ
MSE (δi, ρi, ci)

4: (βi1(δi), ..., βiN (δi)) ← the solution to (C.6) on the
whole data set Fi, Vi for ρi = ρopt,i and ci = copt,i

5: MSE(δi)← MSE(δi, ρopt,i, copt,i)

Appendix D. Details on NIPA dynamic prior

We assume that the time-varying infection rates βij[k]
are proportional to the known population flow mij[k].
ore precisely, we assume that the infection rates βij[k]

for all regions i, j, when i ̸= j, equal

βij[k] = cimij[k] (D.1)

for some unknown proportionality constant ci > 0. Fur-
thermore, we assume that the self-infection probabilities
βii do not change over time k. With (D.1), the SIR model
in Definition 1 yields that

Ii[k+ 1] = (1− δi)Ii[k] + βiiSi[k]Ii[k]

+ ciSi[k]
N∑

j=1,j̸=i

mij[k]Ij[k] + wi[k]. (D.2)

D.1. Maximum-likelihood estimation

To predict the infectious state Ii[k] with (D.2), we
must estimate the constants ci, the self-infection proba-
bilities βii, and the curing rates δi. We define the N × 1
vectors c = (c1, . . . , cN )T and b = (β11, . . . , βNN )T . We
pose the estimation problem in a maximum-likelihood
500
sense as
max
c,b

Pr
[
I[1], . . . , I[n]

⏐⏐c, b]
s.t. ci ≥ 0, i = 1, . . . ,N,

βii ≥ 0, i = 1, . . . ,N,

βii + ci
N∑

j=1,j̸=i

mij[k] ≤ 1

i = 1, . . . ,N, k = 1, . . . , n.

(D.3)

The last constraint in (D.3) ensures that the predictions
of the infections satisfy Ii[k] ≤ 1; see Lemma 4. From
the maximum-likelihood problem (D.3) we derive, for any
region i, the LASSO optimisation problem as

min
ci,βii

n−1∑
k=1

⎛⎝Ii[k+ 1] − (1− δi)Ii[k]

−βiiSi[k]Ii[k] − ciSi[k]
N∑

j=1,j̸=i

mij[k]Ij[k]

⎞⎠2

+ ρi(βii + ci)
s.t. ci ≥ 0,

βii ≥ 0,

βii + ci
N∑

j=1,j̸=i

mij[k] ≤ 1, k = 1, . . . , n.

(D.4)

Here, we denote the regularisation parameter by ρi ≥ 0,
which aims to avoid overfitting. The greater the parame-
ter ρi, the smaller the estimates of the coefficients βii, ci.
If the regularisation parameter ρi = 0, then solving the
LASSO (D.4) for any node i is equivalent to solving the
maximum-likelihood problem (D.3). (The equivalence of
the optimisation problem (D.3) and the LASSO (D.4) can
be derived analogously to Proposition 6.)

To solve the optimisation problem (D.4) for the con-
stants ci and βii, we must specify two unknown variables.
First, we must specify the curing rate δi of region i, which
determines the fractions Si[k] and Ri[k] of susceptible
and recovered individuals, respectively (Prasse, Achter-
berg, Ma et al., 2020). Second, we must specify the pa-
rameter ρi. We perform hold-out cross-validation to set
the unknown variables δi and ρi: The training set consists
of the first 80% of the observations, and the validation set
equals the last 20% of the observations. In pseudocode,
NIPA dynamic prior is given by Algorithm 2.

Appendix E. NIPA static prior under perfect conditions

The original NIPA method is known to provide accurate
predictions when the epidemic perfectly follows the SIR
model (Prasse, Achterberg, Ma et al., 2020, Supplementary
Material 1). Here, we intend to show that NIPA static prior
performs even better if the prior matrix is close to the real
infection matrix.

Suppose we generate data from an SIR epidemic as
in Definition 1. We use a network with N = 10 nodes
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Algorithm 2 NIPA dynamic prior

1: Input: curing probability δi; viral state vi[k] for k =
1, ..., n; infection state vector I[k] for k = 1, ..., n

2: Output: infection probability estimates
βi1(δi), ..., βiN (δi); mean squared error MSE(δi)

3: Compute Vi and Fi
4: ρmax,i ← 2∥F T

i Vi∥∞

5: ρmin,i ← 10−4ρmax,i
6: Θi ← 100 logarithmically equidistant values from

ρmin,i to ρmax,i
7: for ρi ∈ Θi do
8: estimate MSE(δi, ρi) by hold-out cross-validation

on Fi, Vi and solving (D.4) on the respective training
set

9: end for
0: ρopt,i ← argmin

ρi∈Θi

MSE (δi, ρi)

1: (βi1(δi), ..., βiN (δi)) ← the solution to (D.4) on the
whole data set Fi, Vi for ρi = ρopt,i

2: MSE(δi)← MSE(δi, ρopt,i)

with an equal curing rate δ for each node: δi = 0.2 for
all i. We set the curing rate δi in the NIPA algorithms
to the exact curing rates δi = 0.2, such that both NIPA
and NIPA static prior will always estimate the curing rates
correctly. We consider infection probabilities βij that are
uniformly distributed in the interval (0, 1). The effective
reproduction number R0 can be computed as (Van den
riessche & Watmough, 2002)

0 = maximum eigenvalue of
(
B · diag

(
1
δ1

, . . . ,
1
δN

))
.

(E.1)

e normalise B element-wise such that the basic repro-
uction number R0 equals 2.0. Furthermore, we set the
opulation size Ni for each region i to a uniformly dis-
ributed number in the interval [105, 106

] and start with
n initial y1[1] = 100 infected cases in node 1, and zero
nfected cases in the other nodes. Most importantly, we
et the prior infection matrix Bprior to the exact infection
atrix B, multiplied by some noise

prior,ij = βijwij. (E.2)

ere, wij is uniformly distributed in the interval [1, 2]. The
ther parameters are the same as in the main article.
The result in Fig. E.6 is clear: NIPA static prior is able

o capture the dynamics much better than NIPA. Hence,
e conclude that NIPA static prior in combination with
good prior yields better prediction accuracy than the
riginal NIPA method.

ppendix F. Sigmoid curves

In epidemiology, sigmoid curves are commonly used
o forecast the future number of infected cases.

he logistic function was developed by Verhulst in 1845
to explain the growth of the population in a specific
 t

501
region (Verhulst, 1845). The logistic function is the
most often used sigmoid curve in epidemiology,
because the logistic function is the (approximate)
solution of the SIS and SIR model (Prasse, Achter-
berg & Van Mieghem, 2020). The logistic function
assumes the cumulative number of infected cases
yi[k] in region i and time k to follow

yi[k] =
y∞,i

1+ e−Ki(k−t0,i)
, (F.1)

where y∞,i is the long-term fraction of infections, Ki
is the logistic growth rate, and t0,i is the inflection
point, which is also known as the epidemic peak.

he Hill function was introduced in 1910 to describe
the binding of molecules to surfaces (Hill, 1910).
Later, it was successfully applied to describe the
spread of epidemics (Kiskowski & Chowell, 2016).
The Hill function assumes the cumulative number
of infected cases yi[k] in region i at time k to follow

yi[k] =
y∞,i

1+
(

Ki
k−t0,i

)ni , (F.2)

where y∞,i is the long-term fraction of infections,
Ki is the Hill growth rate, ni is the Hill coefficient,
and t0,i is the inflection point, also known as the
epidemic peak.

he Gompertz function was introduced in 1825 to de-
scribe human mortality in a general population
(Gompertz, 1825). Later, the Gompertz function
was also used to describe the spread of epidemics
(Winsor, 1932). The Gompertz function assumes
the cumulative number of infected cases yi[k] in
region i at time k to follow

yi[k] = y∞,ie−cie
−aik

, (F.3)

where y∞,i is the long-term fraction of infections, ci
is a displacement factor (comparable to the inflec-
tion point), and ai is the Gompertz growth rate.

We describe the curve-fitting procedure here for the
ogistic function, but the parameters for any curve can
e estimated analogously. Suppose that we have a time
eries of the cumulative number of reported cases yrep,i[k]
or time k = 1, . . . , n and for any region i. Then, we min-
mise the mean squared error for each region separately:

(ŷ∞,i, K̂i, t̂0,i) = min
(y∞,i,Ki,t0,i)

n∑
k=1

(
yrep,i[k] −

y∞,i

1+ e−Ki(k−t0,i)

)2

,

s.t. 0 ≤ y∞,i ≤ Ni,

Ki ≥ 0,

t0,i ≥ 0,

(F.4)

here Ni is the population of region i. We evaluate the
onlinear minimisation problem (F.4) by the command
lobalSearch in Matlab. As initial conditions, we pro-
ide y∞,i = y(tobs), Ki = 1, t0,i = tobs. The parameters
y∞,i, Ki, ni, t0,i) for the Hill function and (y∞,i, ci, ai) for
he Gompertz function can be estimated analogously.
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Fig. E.6. The prediction for (a) NIPA and (b) NIPA static prior with generated SIR data based on Definition 1 on a 10-node network.
Fig. G.7. (Method A: First remove, then smooth.) The NIPA prediction accuracy for the situation in the Netherlands for varying time steps ∆t . The
ubplots show the forecast for (a) March 18, (b) April 5, and (c) April 23. For the time step ∆t = 2 days and ∆t = 3 days, the data is first removed
nd then smoothed.
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ppendix G. Influence of the time step on the predic-
ion accuracy

In the discrete-time SIR model (1), we use the time
tep ∆t = 1 day. By approximating a continuous-time
rocess (the COVID-19 pandemic) by a discrete-time pro-
ess (SIR model) we make a model error. We investigate
he influence of the time step on the prediction accuracy
y comparing the NIPA prediction accuracy for various
ime steps, ranging from ∆t = 0.5 days to ∆t = 3
ays. Since the number of infected cases is (generally)
eported once a day, the data for the time step ∆t = 0.5
ays is obtained by linearly interpolating the number of
umulative cases yi[k]. For time steps ∆t = 1 day and
t = 0.5 days, we smooth the raw data before calling

he NIPA algorithm (Prasse, Achterberg, Ma et al., 2020).
For time steps ∆t = 2 days and ∆t = 3 days, there

re two possible methods. Method (A) assumes that the
umulative number of cases yi[k] is reported every two
or three) days, and is unreported on the intermediate
ays. Then, we smooth the remaining data before the
IPA algorithm is used. In fact, we have omitted the
502
ata on the intermediate days. In contrast, method (B)
irst smooths all raw data. Thereafter, we only use the
umulative number of cases yi[k] every two or three days
or a time step of two or three days, respectively. The
ain difference is that method (A) completely neglects

he data on intermediate days, whereas method (B) first
pplies a smoother, and then neglects the intermediate
ata.
Figs. G.7 and G.8 show an exemplary situation from the

etherlands for three initial dates. The configuration for
he time steps ∆t = 1 day and ∆t = 0.5 days is equal in
oth figures. At the beginning of the COVID-19 outbreak,
s shown in Fig. G.7(a) for method (A) and Fig. G.8(a) for
ethod (B), the prediction accuracy is similar for all time
teps. The small amount of available data and the rapidly
ncreasing number of cases hampers accurate forecasting.
s the epidemic evolves, method (A) and method (B)
tart to deviate. By omitting data, as in method (A), the
MAPE error in Fig. G.7 increases more quickly for time
teps of two and three days than for smaller time steps.
ence, removing data causes the prediction accuracy to
ecrease. On the other hand, method (B) in Fig. G.8 shows
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Fig. G.8. (Method B: First smooth, then remove.) The NIPA prediction accuracy for the situation in the Netherlands for varying time steps ∆t . The
subplots show the forecast for (a) March 18, (b) April 5, and (c) April 23. For the time step ∆t = 2 days and ∆t = 3 days, the data is first smoothed
and then removed.
similar behaviour for all time steps. We conclude that if
the amount of data is unchanged, the choice of the time
step has limited effect on the prediction accuracy.
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