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Abstract—Designing an optimal network topology while
balancing multiple, possibly conflicting objectives such as
cost, performance, and resiliency to viruses is a challeng-
ing endeavor, let alone in the case of decentralized network
formation. We, therefore, propose a game-formation tech-
nique where each player aims to minimize its cost in in-
stalling links, the probability of being infected by a virus,
and the sum of hopcounts on its shortest paths to all other
nodes. In this paper, we first determine the Nash equilibria
and the price of anarchy (PoA) for our novel network for-
mation game, second demonstrate that the PoA is usually
low, which suggests that (near-)optimal topologies can be
formed in a decentralized way, and third give suggestions
for practitioners for those cases where the PoA is high and
some centralized control/incentives are advisable.

Index Terms—Game theory, network design, networks of
autonomous agents, network performance, virus spread.

I. INTRODUCTION

D ESIGNING communication and computer networks are
complex processes in which careful tradeoffs have to be

made with respect to performance, resiliency/security, and cost
investments. For instance, if a host in a computer network wants
to route traffic to multiple other hosts, it could directly connect to
those other hosts, in this way increasing its expenses in installing
and maintaining these connections and, at the same time, also
becoming more susceptible to viruses from those other hosts. In
return, it would obtain better and faster performance with mini-
mum delays, compared to when it would have used intermediate
hosts as relays. Although in this example, both installation costs
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and risk to viruses are increasing, they are linearly independent
and they do not necessarily optimize together. Indeed, reducing
the number of direct connections would reduce the cost and
the host would be less vulnerable to viruses. However, even
when being connected to a few high-degree nodes with direct
connections, the host would still be seriously exposed to a virus.

In practice, hosts often are autonomous, act independently,
and do not coordinate as in peer-to-peer (P2P) networks [2],
peering relations between autonomous systems [3], overlay
networks [4], wireless [5]–[7] and mobile [8] networks, re-
source sharing in voice over IP (VoIP) networks [9], social
networks [10], [11] or the Internet [12]. Their aim is to op-
timize their own utility functions, which are not necessarily
in accordance with the global optimum. To study global net-
work formation under autonomous actors, the network forma-
tion game (NFG) framework [13] has been proposed. However,
resilience and notably virus protection have not been taken into
account in that NFG context, even though their importance is
undisputed. In this paper, we therefore take the NFG framework
one step further by including performance and virus protection
as key ingredients. Virus propagation will be modeled by the
susceptible-infected-susceptible (SIS) model [14] and we will
evaluate the effect of uncoordinated autonomous hosts versus
the optimal network topology via standard game-theoretic con-
cepts, such as Nash equilibria and the prices of anarchy and
stability.

Our NFG is called the Virus Spread-Performance-Cost
(VSPC) game. Each node (i.e., autonomous player) attempts
to minimize both the cost and infection probability, while still
being able to route traffic to all other nodes in a small number
of hops. When the hopcount performance metric is irrelevant,
the game is driven by the cost and virus objectives; a scenario
we studied in [1]. That particular scenario resulted in sparse
graphs, which may not always represent real-world networks,
but it helped to understand the process of virus spread better.
In this paper, we generalize those results by also including the
hopcount performance metric. The probability of the node being
infected and the hopcounts to the other nodes change in a differ-
ent direction, for example, adding a link reduces the former, but
increases the latter. Therefore, there is a tradeoff in the number
of added links and how these new links are best added. More-
over, the two metrics are linearly independent and closed-form
expressions do not exist, which makes the problem complex.
Finally, the inclusion of the hopcount allows us to better capture
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realistic networks. In particular, our main contributions are as
follows.

1) We provide a complete characterization of the various
relevant parameter settings and their impact on the for-
mation of the topologies.

2) We show that depending on the input, the Nash equilib-
ria may vary from tree graphs, via graphs of different
diameters, to complete graphs.

3) We demonstrate, both via theory and simulations, that
the price of anarchy (PoA) is small in most cases, which
implies that (near-)optimal topologies can be formed in a
decentralized noncooperative manner. We will also iden-
tify for which scenarios the PoA may be high. In those
cases, a central point of control would be desirable to
limit/steer the players’ decisions.

This paper is organized as follows: The SIS-virus spread
model and the NFG model are introduced in Section II. The
VSPC game formation is analyzed in Section III. Related work
on game formation and protection against viruses is discussed
in Section IV. The conclusion and directions for future work are
provided in Section V.

II. MODELS AND PROBLEM STATEMENTS

A. Virus-Spread Model

The spread of viruses in communication and computer net-
works can be described, using virus-spread epidemic mod-
els [14]–[16]. We consider the SIS N-intertwined mean-field
approximation (NIMFA) model [14], [17]

dvi (t)
dt

= β (1 − vi (t))
N∑

j=1

aij vj (t) − δvi (t) (1)

where N is the number of network nodes and vi(t) is the proba-
bility of node i being infected at time t, for all i ∈ {1, 2, . . . , N}.
If a link is present between nodes i and j, then aij = 1; oth-
erwise, aij = 0. In (1), a host with a virus can infect its direct
healthy neighbors with rate β, whereas an infected host can be
cured at rate δ, after which the node becomes healthy, but sus-
ceptible again to the virus. The probability vi(t) depends on the
probabilities vj (t) of the neighbors j of node i and there is no
trivial closed-form expression for vi(t). The model incorporates
the network topology and is, thus, more realistic than the related
population dynamic models. The model relies on the network
topology, which makes it more realistic than the related pop-
ulation dynamic models. The goodness of the model has been
evaluated in [18]. The probability of a node being infected in
the metastable regime, denoted by vi∞, where dvi (t)

dt = 0 and
vi∞ �= 0, follows from (1) as [14]

vi∞ = 1 − 1

1 + τ
∑N

j=1 aij vj∞
(2)

where τ = β
δ is called the effective infection rate. The epidemic

threshold τc is defined as a value of τ , such that vi∞ > 0 if
τ > τc , and otherwise vi∞ = 0 for all i ∈ {1, 2, . . . , N}. The
value of vi∞ depends on the values of all vj∞ for all neighbors
j of i, so the network topology and the interconnectivity have
impacts on vi∞s.

B. Game-Formation Model

In our NFG, each player i (a node in the network) aims to
minimize its own cost function Ji , and the social cost J is
defined as J =

∑N
i=1 Ji . Specifically, the optimal social cost is

the smallest social cost over all possible connected topologies.
We look for the existence, uniqueness, and characterization of
(pure) Nash equilibria.1 The PoA and the price of stability (PoS)
are defined as the ratio of social cost in the worst-case Nash
equilibrium (the one with highest social cost) and the optimal
social cost, and the ratio of the social cost in the best-case Nash
equilibrium (the one with lowest social cost) and the optimal
social cost, respectively

PoA =
J(worst NE)

min J
, PoS =

J(best NE)
min J

. (3)

PoA is an efficiency measure, illustrating how bad selfish play-
ing is, in comparison to the global optimum. PoS, on the other
hand, reflects the best possible performance without coordina-
tion in comparison to the global optimum. The network about to
be designed is empty and every node in the network is a player.
We assume the cost of building one (communication) link be-
tween two nodes is fixed. Every player i can install a link from
itself to another node j. Installing a link between i and j means
that both i and j can utilize it, but only one pays for the cost, like
often assumed in NFG models [4], [12], [19]. Several examples
fit this scenario as follows:

1) a friend request is initiated by one node in a social net-
work, but both read the posts from one another;

2) a new road connecting two cities is built by one city in a
road network, but both utilize it;

3) in a hand-shake protocol in a computer network, one node
initiates a connection used by two nodes.

We consider a VSPC NFG, where player i aims to reduce its
cost and the probability vi∞ of being infected, but concurrently
also wants to improve its performance by shortening the hop-
counts h(i, j) of the shortest paths to all other nodes j. The cost
function of player i that unites these objectives is given by

Ji = α · ki + γ
N∑

j=1

h(i, j) + vi∞. (4)

Function Ji involves the cost ki of installing all links from
node i, weighted by a coefficient α. The hopcounts h(i, j) are
weighted by γ. Opposing goals meet in this game: the more links
are installed, the shorter the paths, but the higher the probability
of being infected and the higher the cost.

The social cost J for the whole network is a weighted sum
over all nodes

J =
N∑

i=1

Ji = αL + γ

N∑

i=1

N∑

j=1

h(i, j) +
N∑

i=1

vi∞ (5)

where L denotes the number of links.

1A Nash equilibrium is the state of the players’ network strategies, where
none of the players can reduce its cost by unilaterally changing its strategy.
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Fig. 1. Link is installed by the end node marked with p. Trees in (a), (b), and (c) are Nash equilibria. (d) Tree T ′′ cannot be a Nash equilibrium.

III. VSPC GAME

A. Optimal Social Cost, Nash equilibria, and the PoA
for γ → 0

In order to understand the effect of the virus protection, we
start by setting γ to an infinitely small number (approaching
zero2). As a result, the hopcounts are of no influence anymore,
whereas network connectivity is still guaranteed (the hopcount
between two disconnected nodes is assumed to be infinity).
Lemma 1 limits the possible Nash equilibria.

Lemma 1: The probability vi∞(G) of node i being infected
in the metastable state in network G does not exceed the prob-
ability vi∞(G + l) of node i being infected in the metastable
state in network G + l obtained by adding a link l to G.

Proof: The newly added link l = (a, b) is between nodes a
and b. We make use of the canonical infinite form [14]

vi∞ = 1 − 1

1 + τdi − τ
∑N

j=1
ai j

1+τ dj −τ
∑N

k = 1
a j k

1 + τ d k −
...

. (6)

After the addition of link l = (a, b), the expression (6) for
vi∞(G + l) has all of the terms the same as in vi∞(G), ex-
cept the following differences: da → da + 1; db → db + 1 and
the presence of the adjacency entry aab = 0 → aab = 1 in the
canonical representation. The last statement implies that its con-
tribution is a part that is the same as in vi∞(G) until it “reaches”
nodes a or b, where the expression (at a certain depth of the
canonical form) is

τ(da + 1) − τ

τ(db + 1) − . . .
+ U = τda + U

+ τ

(
1 − 1

τ(db + 1) − . . .

)
(7)

where da and db are the degrees of a and b in G, whereas U
is the remaining part in the canonical form. In (7), the term
τ(1 − 1

τ (db +1)−... ) is positive and U increases with da and db .
U increases with da and db as it is also an infinite canonical
form with any of these two variables being in the numerator or
in the denominator with a negative sign in front, in the same
way as explained in the lines above—repeating infinitely many
times. Therefore, the whole term in (7) increases, which implies
that vi∞(G + l) > vi∞(G) also increases for each node i.

We start by looking into the possible Nash equilibria.

2The case of γ = 0 is either trivial or debatable. By neglecting the hopcounts,
the optimal topology would be the (nonrealistic) empty graph with no links
(cost) and no epidemic to be propagated. Moreover, infinite hopcounts will be
multiplied by γ = 0 which is undefined.

Theorem 1: If a Nash equilibrium is reached, then the
constructed graph is a tree.

Proof: If G is connected and each node can reach every
other node, then changing the strategy of node i from the current
one to investing in an extra link, will increase both its cost (by
1, scaled by α) and vi∞ (by Lemma 1). Hence, unilaterally
investing in an extra link is not beneficial for a node.

We now assume that G is not a tree. Then, there is at least
one cycle in this graph. If a node i in that cycle changes its
strategy from investing in a link in that cycle to not invest-
ing, the cost is decreased by one (weighted by α) and all of
the other nodes in the graph are still reachable from i. More-
over, by not investing in that link, node i decreases its probabil-
ity vi∞ of being infected in the metastable state, according to
Lemma 1. Hence, by unilaterally changing its strategy, node i
decreases its cost utility Ji , which is in contradiction with a Nash
equilibrium.

Observation 1: A Nash equilibrium is achieved for both
the star graph and the path graph, but not all trees are Nash
equilibria.

Proof: Let us consider a star graph, where all of the links
are installed by the root node as shown in Fig. 1(a). (A link is
installed and paid for by the node marked with p.) The root node
cannot unilaterally decrease its cost, because cutting at least one
of its installed links would disconnect it, while installing a link
from a leaf node i would increase both ki and vi∞ (Lemma 1).
Hence, the star graph is a Nash equilibrium.

Let us now assume that a path graph [see Fig. 1(b)] is con-
structed, such that (N − 1) nodes invest in exactly one link and
one of the leaves does not invest in installing a link. Similar to
a star graph, none of the nodes can unilaterally decrease their
cost by just installing extra links or cutting some of them. A
“rewiring”3 from one of the nodes by redirecting its installed
links to another node may be in order. In such a case, if node
i “rewires” its installed link to another node, then Ji would
not decrease. 1) If it is installed to one of the leaves, such that
the graph is connected, we end up with an isomorphic graph,
where the position of i is the same as in the initial graph, so
Ji stays the same. 2) If i “rewires” to one of the other nodes j
(w.l.o.g., i < j) as visualized in Fig. 1(e), i would have the same
degree, but its “new neighbor” would have a degree 3 instead
of 2. The degree of j increases by 1 to 3 and the degree of
(i + 1) decreases by 1 to 1 [node (i + 1) will become terminal
and “far” from i], whereas all other degrees remain the same.

3“Rewiring” is a process of removing a link to node k initiated by node i and
establishing a new link to another node j . The degree of node i does not change,
whereas the degrees of k and j are decreased and increased, respectively.
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Moreover, i would be equally close to any of the nodes “behind”
{1, . . . , i − 1}, closer to the nodes “at the end” {j + 1, . . . , N},
and equally close to the nodes in the set {i + 1, . . . , j − 1}, but
just in a reverse order. Based on the canonical infinite form (6),
vi∞ would increase.4 Therefore, the path graph is also a Nash
equilibrium.

There are also other trees that are Nash equilibria [e.g.,
T ′ given in Fig. 1(c)]. Moreover, there are values of τ such
that worst- and best-case Nash equilibria are achieved for
trees different from star K1,N −1 and path PN graphs. For
τ ∈ [1.475, 1.589], tree T ′ is the best-case Nash equilibrium
and has optimal social cost.

However, not all trees are Nash equilibria [e.g., the tree given
in Fig. 1(d)]. Here, whomever pays for the “central” link be-
tween a and b, can reduce its cost utility by “rewiring” to c or
d.

We proceed by characterizing the worst- and best-case Nash
equilibria.

Theorem 2: For a sufficiently high effective infection rate
τ , the optimal social cost and the best-case Nash equilibrium
are achieved by the star graph K1,N −1 , whereas the worst-case
Nash equilibrium is achieved for the path graph PN

J(K1,N −1) ≤ J ≤ J(PN ).

Proof: According to Theorem 1, in a Nash equilibrium,
the graph is a tree; hence, it has N − 1 links. In a general case,
from a tree in which there are two nodes i and k, connected to
one another, for which di ≥ 3 and dk = 1 (i.e., k is a leaf), by
breaking the connection between i and k and connecting k to
another leaf j instead, we have: the degree of k is 1 (remains the
same); the degree of node i becomes di − 1 ≥ 2 (decreased by
one); and the degree of j is 2 (increased by one). The process
can be repeated until there exists a node of degree at least 3 in
the tree. At the end, we end up with a tree with no degree bigger
than 2 and this is a path PN . The social cost J is increased in
each step [1, Lemma 2]. In this way, the process converges to a
path PN .

In a very similar (but reverse) process, starting from any tree
G, we can decrease J at each step, ending up with a star K1,N −1
with a maximum J(G) in the final step.

However, what would be the optimal social cost, and the
worst- and best-case Nash equilibria highly depends on the
effective infection rate τ .

Theorem 3: For low values of the effective infection rate
τ , above but sufficiently close to the epidemic threshold τc ,
the optimal social cost and the best-case Nash equilibrium are
achieved by the path graph PN , whereas the worst-case Nash
equilibrium is achieved by the star graph K1,N −1

J(PN ) ≤ J ≤ J(K1,N −1).

Proof: We consider a spectral approach [20] and denote
y(τ) =

∑N
i=1 vi∞(τ) as the infection probability of all nodes

in the metastable state. The probabilities of a node in the graph
being infected are nonzero and y(τ) > 0 if τ > τc = 1

λ1
, where

4vi∞ in (6) would have bigger values by having nodes with “bigger degrees”
as close as possible (i.e., in fewer hops) to the node.

λ1 is the largest eigenvalue of the adjacency matrix in the
graph [16]. For τ < 1

λ1
, y(τ) = 0.

Lovász and Pelikán [21] ordered all trees with N nodes by
the largest eigenvalues of the adjacency matrices. It turns out
that the path PN and star K1,N −1 are the trees with the mini-
mum λ1(PN ) and maximum λ1(K1,N −1) largest eigenvalues,
respectively.

For values τ = 1
λ1 (K 1 , N −1 ) + ε = 1√

N −1
+ ε, it holds that

yK 1 , N −1 (τ) > yT (τ) = 0, where T is any tree different from
K1,N −1 ; therefore, J(K1,N −1) is the largest.

For values τ = 1
λ1 (PN ) − ε = 1

2 cos( π
N + 1 ) − ε, we have

yT (τ) > yPN
(τ) = 0, where T is any tree different from PN ;

hence, J(PN ) is the smallest.
Theorems 2 and 3 show opposite behavior depending on

whether the value τ is in the high or low regime, although
both revolve around the path and star graphs. For τ in the in-
termediate regime, different trees may give the best-/worst-case
Nash equilibrium.

Corollary 1: For both high and low effective infection rate
τ , PoS = 1 and PoA = max

{ J (PN )
J (K 1 , N −1 ) ,

J (K 1 , N −1 )
J (PN )

}
.

Proof: Based on Theorems 2 and 3, for high (low) τ ,
tree K1,N −1 (PN ) is both optimal in social cost and the best-
case Nash equilibrium, whereas PN (K1,N −1) is the worst-case
Nash equilibrium. Based on the definitions for PoS and PoA in
(3), PoS = J (K 1 , N −1 )

J (K 1 , N −1 ) = 1(= J (PN )
J (PN ) ); and PoA = J (PN )

J (K 1 , N −1 ) for

large enough τ and PoA = J (K 1 , N −1 )
J (PN ) for τ close to the epidemic

threshold τc .
Corollary 2: For a sufficiently high effective infection rate

τ , in the virus spread-cost game formation

PoA < 1 +
1

2
(
τ(α + 1) − 1

) , where τ(α + 1) > 1.

Proof: The proof is provided in [1].
The exact value of the PoA is given in Fig. 2 by making

use of Corollary 1. It is highest (∼ 3.3) for small τ , above the
epidemic threshold and it further sharply decreases reaching one
for a unique Nash equilibrium. For higher τ , the PoA increases
towards its maximum around 1.1 and then it slowly decreases
approaching one.

We have observed that the equilibria tree topology in which a
virus thrives is not always a star (i.e., the tree with the smallest
diameter), but that it may differ with the virus infection rate. For
most of the τ values (except maybe small τ ), a small value for
the PoA means that a topology close to optimal can be obtained
in a decentralized manner, even when the individual players play
selfishly.

B. Optimal Social Cost, Nash equilibria, and the PoA for
γ > 0

We start by analyzing the social cost (5). Node i is one hop
away from its di neighboring nodes, while it is at least 2 hops
away from the other N − 1 − di nodes; hence,

∑N
j=1 h(i, j) ≥

di + 2(N − 1 − di). Using this, for large enough τ when
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Fig. 2. Price of anarchy (PoA). The dotted lines represent the bound
from Corollary 2. (a) N = 10. (b) N = 1000.

∑N
i=1 vi∞ can be approximated5 by using truncation of Maclau-

rin seria [17, Lemma 1], the social cost in (5) is lower bounded
as

J ≥ N + 2γN(N − 1) + (α − 2γ)L − 1
τ

N∑

i=1

1
di

. (8)

The following bound is due to Cioabă [22, Th. 9]:

N∑

i=1

1
di

≤ N 2

2L
+
(

1
dmin

− 1
dmax

)(
N − 1 − 2L

N

)

where the equality holds for regular graphs and the star graph.
Based on this, dmin ≥ 1, and dmax ≤ N − 1, we obtain

N∑

i=1

1
di

≤ N 2

2L
+
(

1 − 1
N − 1

)(
N − 1 − 2L

N

)

=
N 2

2L
+

N − 2
N(N − 1)

(N(N − 1) − 2L). (9)

Equality in (9) is achieved only for the star K1,N −1 , where
dmax = N − 1 and dmin = 1, or for the complete graph KN

5In fact, the sum can be lower bounded [14, p. 10] by
∑N

i=1 vi∞ > N −∑N

i=1
1

1+ (τ −1)d i
, which is meaningful for τ > 1.

[where 2L = N(N − 1)]. [The equality for other regular graphs
is ruled out because of the inequality in (9).] Using (9) into (8)
yields

J ≥ N + 2γN(N − 1) − N − 2
τ

+
(
α − 2γ +

2(N − 2)
τN(N − 1)

)

× L − N 2

2τL
. (10)

Let us consider the following two regimes.
1) If α − 2γ + 2(N −2)

τ N (N −1) ≥ 0, then the bound in (10) is an
increasing function in L; hence, the optimal social cost
is achieved for L = N − 1. The bound in (10) is tight
for such L, because the bounds in (9) and (8) become
equalities for K1,N −1 and any graph with a diameter of
at most two, respectively. Hence, J ≥ J(K1,N −1) and
equality is achieved only for the star graph K1,N −1 .

2) If α − 2γ + 2(N −2)
τ N (N −1) < 0, then the bound in (10) in-

creases for L < N√
2τ (2γ−α)− 4 (N −2 )

N (N −1 ) )
and decreases for

L > N√
2τ (2γ−α)− 4 (N −2 )

N (N −1 ) )
. Hence, the optimal social cost

is achieved in one of two boundary cases: L = N − 1
and L =

(
N
2

)
. For L = N − 1, similarly as in 1), we ob-

tain that the only possibility is the star graph K1,N −1 ,
whereas for L =

(
N
2

)
, it is the complete graph KN . Fi-

nally, J ≥ min{J(K1,N −1), J(KN )}.
It remains to compare J(K1,N −1) and J(KN ): J
(K1,N −1) = N + α(N − 1) + 2γ(N − 1)2 −
(N −1)2 +1

τ (N −1) and J(KN ) = N + αN (N −1)
2 + γN(N −

1) − N
τ (N −1) . Hence

J(KN ) − J(K1,N −1) = (N − 1)(N − 2)

×
(

α

2
− γ +

1
τ(N − 1)

)
.

If α ≤ 2γ − 2
τ (N −1) , then J(KN ) ≤ J(K1,N −1) and the

optimal social cost is achieved for the complete graph
KN . If α ≥ 2γ − 2

τ (N −1) , then J(KN ) ≥ J(K1,N −1)
and the optimal social cost is achieved for the star
graph K1,N −1 . The last also covers case 1), because

2γ − 2
τ (N −1) < 2γ − 2(N −2)

τ N (N −1) .
Now, for the optimal social cost, Theorem 4 follows.

Theorem 4: For sufficiently high τ , the optimal social cost
is achieved for the star K1,N −1 if α ≥ 2γ − 2

τ (N −1) , and for the
complete graph KN , otherwise.

We proceed with characterization of the Nash equilibria and
the PoA for sufficiently high τ . In the VSPC game, Nash equi-
libria topologies can be complex, while the star and the complete
graph can appear as extreme cases.

1) The complete graph KN is a Nash equilibrium, if
and only if α ≤ γ − 1

τ (N −1) . Since new links cannot
be added, changing the strategy for a node i means
deleting k of its links (1 ≤ k ≤ N − 2). The cor-
responding change would increase the cost Ji of i
by k(γ − α) − 1

τ (N −1−k) + 1
τ (N −1) = k(γ − α) −
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k
τ (N −1)(N −1−k) ≥ k

τ (N −1) (1 − 1
N −1−k ) ≥ 0. Hence,

node i has no interest to deviate from its current strategy.
On the other hand, if α > γ − 1

τ (N −1) and node i changes
its strategy by cutting (N − 2) links (all except one—to
keep its connectivity), the change in Ji is equal to (N −
2)(γ − α − 1

τ (N −1) ) < 0, which will reduce its cost.
2) The star graph K1,N −1 is a Nash equilibrium, if and only

if α ≥ γ − 1
τ (N −1) . The root node cannot delete a link,

because this would make its cost infinity. If i is a leaf,
for some k ≥ 0, changing its strategy means: i) adding k
links, then the hopcounts to these nodes are reduced from
2 to 1; hence, the contribution from the hopcounts is
changed by −kγ; or ii) deleting the link installed by him
(if any) and installing (k + 1) links, where k + 1 < N −
2. In ii), the hopcount to the root node is increased from
1 to 2, the hopcount to (k + 1) links is decreased from 2
to 1, and the hopcounts to the other

(
(N − 2) − (k + 1)

)

nodes are increased from 2 to 3. The change in the sum
of hopcounts is: −(k + 1)γ + 1 · γ +

(
(N − 2) − (k +

1)
)
γ = −kγ +

(
(N − 2) − (k + 1)

)
γ ≥ −kγ; hence,

the change of the hopcount is again at least−kγ. Thus, the
change in Ji is at least kα − kγ − 1

τ (k+1) + 1
τ = k(α −

γ + 1
τ (k+1) ) ≥ k(α − γ + 1

τ (N −1) ) ≥ 0. On the other

hand, if α < γ − 1
τ (N −1) , the change in Ji by adding

(N − 2) links from one leaf to all other leaves in K1,N −1 ,
is (N − 2)(α − γ) − 1

τ (N −1) + 1
τ = (N − 2)(α − γ +

1
τ (N −1) ) < 0, that is, it is not a Nash equilibrium.

The above two points resolve the conditions for two specific
graphs, but they do not cover all possibilities for the Nash equi-
libria and the PoA, which may vary on different intervals and a
case analysis, as provided in the following text, is required. We
will consider the case α < 2γ − 1

τ and the case α > 2γ − 1
τ .

1) Case α < 2γ − 1
τ

: Now, γ > 1
2τ . A Nash equilibrium is

achieved only for graphs with a diameter of, at most, 2—an
argument used in the later points (b) and (c). The proof is by
contradiction. Let us assume node i is at least 3 hops away from
another node. Clearly, di ≤ (N − 2) and if i installs a link from i
to j, the difference in Ji is at least α − 2γ + 1

τ di (di +1) ≤ − 1
τ +

1
τ di (di +1) < 0. Hence, i reduces its cost and the graph is not a
Nash equilibrium. We consider the following three subintervals
(a), (b), and (c).

(a) If α < γ − 1
2τ , adding a link from i will change Ji by

at least α − γ + 1
τ di (di +1) < − 1

2τ + 1
τ di (di +1) ≤ 0. Therefore,

the complete graph KN is the only Nash equilibrium. This is be-
cause α < γ − 1

2τ ≤ 2γ − 2
τ (N −1) for N ≥ 3 and, according to

Theorem 4, it also has optimal social cost. Finally, PoA =
PoS = 1.

(b) If γ − 1
2τ ≤ α ≤ γ − 1

τ (N −1) and we assume, by contra-
diction, that there is a Nash equilibrium different from KN , we
have the following instances.

1) If there is a link in the graph, installed by node
i such that its deletion increases the sum of hop-
counts from i by only 1, then Ji is increased by:
γ − α − 1

τ di (di −1) > 0. On the other hand, adding a

link would change Ji into α − γ + 1
τ di (di +1) > 0. The

last two inequalities imply 0 < α − γ + 1
τ di (di +1) <

− 1
τ di (di −1) + 1

τ di (di +1) = − 2
τ (di −1)di (di +1) < 0, which

is a contradiction. Hence, there is no other Nash equilib-
rium different from KN and PoA = PoS = 1.

2) If deleting any of the links installed by i would increase
the sum of hopcounts by at least 2; by link deletion, the
difference in Ji is at least 2γ − α − 1

τ di (di −1) and we

have 2γ − α − 1
τ di (di −1) ≥ γ + 1

τ (N −1) − 1
τ di (di −1) ≥

1
2τ − 1

τ di (di −1) + 1
τ (N −1) ≥ 1

τ (N −1) > 0. We proceed by
considering the properties of the possible Nash equi-
libria in particular subintervals: − 1

τ (k−1)k ≤ α − γ <

− 1
τ k(k+1) for k ∈ {2, 3, . . . , �

√
N − 3

4 − 1
2 �}. By link

addition, the difference in Ji is α − γ + 1
τ di (di +1) and a

necessary condition for a Nash equilibrium is di < k. On

the other hand, k ≤
√

N − 3
4 − 1

2 ≤ √
N − 1; hence,

di <
√

N − 1. Therefore, we have less than
√

N − 1
nodes that are on a distance one from a node i. Each of
these nodes is directly connected by less than

√
N − 1 −

1 nodes different from i. Hence, there are less than√
N − 1 +

√
N − 1(

√
N − 1 − 1) = N − 1 nodes that

are, at most, 2 hops from i; hence, at least one node that
is more than 2 hops away from i, a contradiction to the
general claim [before (a)]. Hence, KN is the only Nash
equilibrium and PoA = PoS = 1.

(c) If γ − 1
τ (N −1) ≤ α < 2γ − 1

τ , then K1,N −1 is a Nash
equilibrium. Graphs that are of diameter at most 2 are also
candidates for a Nash equilibrium.

Because the diameter of the graph is not bigger than 2, (8)
becomes an equality J = N + 2γN(N − 1) + (α − 2γ)L −
1
τ

∑N
i=1

1
di

for sufficiently large τ . Applying the condition of
(c) leads to

J(worst NE) < N + 2γN(N − 1) − 1
τ

L − 1
τ

N∑

i=1

1
di

= N + 2γN(N − 1) − 1
τ

N∑

i=1

(
di

2
+

1
di

)

≤ N + 2γN(N − 1) − 3N

2τ

= N

(
1 + 2γ(N − 1) − 3

2τ

)
(11)

due to the fact that di

2 + 1
di

≥ 3
2 (equivalent to (di − 1)(di −

2) ≥ 0). Equality holds (only) in the last line of (11) if di = 1
or di = 2 for all i (e.g., the ring CN or the path PN graphs);
otherwise, a strict inequality in the second part also holds. Fi-
nally, knowing that the optimal social cost is attained by the
complete graph KN and the condition inequality condition in
(c) for J(KN )

PoA =
J(worst NE)

J(KN )
<

1 + 2γ(N − 1) − 3
2τ

1 + 3γ (N −1)
2 − 1

2τ − 1
τ (N −1)
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=
4
3

(
1 + 3γ (N −1)

2 − 1
2τ − 1

τ (N −1)

)
−
(

1
3 + 5

6τ − 4
3τ (N −1)

)

1 + 3γ (N −1)
2 − 1

2τ − 1
τ (N −1)

≤
4
3

(
1 + 3γ (N −1)

2 − 1
2τ − 1

τ (N −1)

)

1 + 3γ (N −1)
2 − 1

2τ − 1
τ (N −1)

=
4
3

for each N ≥ 3; because 1
3 + 5

6τ − 4
3τ (N −1) > 0. This bound

is approached, for instance, when α and γ are large and bigger
than τ : KN is the social optimum and K1,N is the worst-case
Nash equilibrium and the bounds in (11) and the inequality for
PoA are closely approached. If α < γ − 1

τ (N −1)(N −2) , KN is a
Nash equilibrium and PoS = 1; otherwise, PoS > 1.

2) Case α > 2γ − 1
τ

: We first consider the links, whose
deletion leaves the graph connected. For any node i, we fo-
cus on the links installed by i. Let l = (i, j) be one such link
and the number of all nodes q that use l as a link for the shortest
paths from j to q is z. According to Schoone et al. [23, Th. 2.1.,
case k = 1], all distances from i to the other nodes are increased
by, at most, 2d, where d is the diameter in the original graph. In
a Nash equilibrium, 2dzγ − α − 1

τ di (di −1) > 0 for any possible

value of di ≥ 2, that is, we obtain 2dzγ − α − 1
2τ > 0. Hence,

z >
α+ 1

2 τ

2dγ and then the number of such links to node j is not

bigger than 2dγN
α+ 1

2 τ

. Taking into account all possible nodes, the

number of links whose deletion does not disconnect the graph
is not bigger than 2dγN 2

α+ 1
2 τ

. On the other hand, there are, at most,

(N − 1) links such that a removal of any of those links discon-
nects the graph. Indeed, a connected graph has a spanning tree
T , and a link removed from T disconnects the graph, while a
removal of a link that is not in T leaves the graph connected.
Therefore

L ≤ N − 1 +
2dγN 2

α + 1
2τ

. (12)

If two nodes i and j are a hops apart from each other, adding
a link from i to j would reduce the hopcounts from i to all of
the nodes in the “second half” along the previous path to j by
at least half of their lengths, by a − 1, a − 3, . . . , 1 for a even
or by a − 1, a − 3, . . . , 2 for a odd. Hence, the total reduction
in the sum of shortest paths from i is

∑ a
2
i=1(2i − 1) = a2

4 or
∑ a −1

2
i=1 (2i) = a2 −1

4 for a even or odd, respectively. Assuming
a Nash equilibrium and i is a starting node on the diameter,
considering the change in cost Ji , the following inequality would
hold for any d: α − d2 −1

4 γ + 1
τ di (di +1) > 0. Using di ≥ 1 and

the absolute maximum for d being N − 1, we arrive at

d < min
{√

1 +
4
γ

(α +
1
2τ

), N
}

. (13)

Each node i has at least one neighbor and all others are no
more than d hops apart; hence,

∑N
j=1 h(i, j) ≤ 1 + (N − 1)d.

Applying the arithmetic-harmonic mean inequality leads to
1
τ

∑N
i=1

1
di

≥ 1
τ

N 2
∑N

i = 1 di
= N 2

2Lτ . We proceed by upper bound-

ing J in (8)

J ≤ N + αL + γN(1 + (N − 1)d) − N 2

2Lτ
. (14)

Applying (12) modifies (14), into

J ≤ N + α(N − 1) + γN + N

(
(N − 1) +

2αN

α + 1
2τ

)
γd

− N 2

2τ
(
N − 1 + 2dγN 2

α+ 1
2 τ

) . (15)

We distinguish the following two subcases (a) and (b).
(a) If α ≥ 2γ − 2

τ (N −1) , then the optimal social cost (and a
Nash equilibrium) is achieved for the star graph K1,N −1 ; hence,
PoS = 1. Now, using (15) for PoA

PoA ≤ N + αL + γN(1 + (N − 1)d) − N 2

2Lτ

N + α(N − 1) + 2γ(N − 1)2 − (N −1)2 +1
τ (N −1)

(16)

and applying (12)
1) γ · d is not infinitesimally small. For sufficiently large6

N , after some algebraic transformation, division by N 2

in both the numerator and denominator of (17) shown at
the bottom of this page, and applying (12)

PoA ≤ O

((
1
2

+
α

α + 1
2τ

)√

1 +
4
γ

(
α +

1
2τ

))
.

(18)
2) γ · d is infinitesimally small. According to (12), L =

O(N). Now, (16) yields

PoA ≤ O

⎛

⎝ N + αL − N 2

2Lτ

N + α(N − 1) − (N −1)2 +1
τ (N −1)

⎞

⎠ . (19)

(b) If 2γ − 2
τ (N −1) ≥ α ≥ 2γ − 1

τ , then the optimal social
cost is achieved for the complete graph KN , and using (15),

PoA ≤ N +αL+γN (1+(N −1)d)− N 2
2 L τ

N +α
N (N −1 )

2 +γN (N −1)− N
τ (N −1 )

. Now

1) γ · d is not infinitesimally small. Using the bound for
L in (12), for sufficiently high enough6 N , (17) is trans-

formed into PoA ≤ O(2
√

γ 2 +4γ (α+ 1
2 τ )

α+2γ (1 + 2α
α+ 1

2 τ

)) and

we have a constant value for PoA.
2) γ · d is infinitesimally small. Then, α is small and PoA

has a value close to 1.

6Significantly larger compared to the coefficients α, γ , and τ .

PoA ≤
N + α(N − 1) + Nγ + Nγ

(
N − 1 + 2αN

α+ 1
2 τ

)
d − N 2

2τ

(
N −1+ 2 d γ N 2

α + 1
2 τ

)

N + α(N − 1) + 2γ(N − 1)2 − (N −1)2 +1
τ (N −1)

. (17)
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Based on these results, we present Theorem 5.
Theorem 5: For sufficiently high τ in the VSPC game, the

PoA depends on the parameters α, γ, and τ .
1) If α ≥ 2γ − 2

τ (N −1) , then PoS = 1 and if
a) γd is not small, then

PoA ≤ O(( 1
2 + α

α+ 1
2 τ

)
√

1 + 4
γ (α + 1

2τ )).
b) γ · d is small, then PoA is given by Corollary 1.

2) If 2γ − 2
τ (N −1) ≥ α ≥ 2γ − 1

τ and
a) γd is not small, then

PoA ≤ O(2
√

γ 2 +4γ (α+ 1
2 τ )

α+2γ (1 + 2α
α+ 1

2 τ

)).
b) γ · d (and γ) is small, then α is also small and we

have a constant value for PoA close to 1.
3) if 2γ − 1

τ > α ≥ γ − 1
τ (N −1) , then Nash equilibria

graphs have diameters at most two and PoS ≤ PoA < 4
3 .

4) If γ − 1
τ (N −1) > α, then KN is the only Nash equilib-

rium and PoA = PoS = 1.
Theorem 5 and Corollaries 1 and 2 are compatible for

small γ.

C. Computational Aspects and Simulations

Since, 1) for small τ below the epidemic threshold τc , vi∞ =
0 and 2) for τ = ∞, vi∞ = 1 for all i ∈ {1, 2, . . . , N}, the
problem of finding a best response in the VSPC game includes
the best-response problem described in [12], which is NP-hard.
We, therefore, use a best-response heuristic algorithm, as in [4].
The steps of the algorithm are as follows.

1) We start with an initial random graph G = G1
1 .

2) Time t is slotted and the first time slot is t = 1.
3) Each node takes only two actions at each time slot t.

We fix the order of actions from node 1 to node N . The
possible actions for each node are: dropping a link (D);
adding a link (A); or doing nothing (N).

4) We denote by Gi
t the graph at time t before the action of

node i.
5) Starting from node 1, each node i first computes the max-

imum reduction of its cost Ji induced by dropping a link
(D) from graph Gi

t , or takes action (N) if no reduction
could be realized. Taking the obtained graph, node i com-
putes the maximum reduction of its cost Ji induced by
adding a link (A), or takes action (N) if no reduction could
be realized.

6) After the decision of node i at time t, the graph becomes
Gi+1

t . After the decision of node N , the algorithm moves
to time t + 1 (i.e., to graph G1

t+1).
7) An equilibrium is reached at time t when all nodes take the

action (N) or the algorithm stops after a certain number
of iterations tmax is reached.

In Fig. 3, results are given for the PoA, the average number of
links, and the average hopcount as a function of installation cost
α for different effective infection rates τ (namely, big, moderate,
and small τ with values 5.2, 1.4, and 1, respectively, that well
represents the three regimes) and different weights (costs) for
the hopcounts γ in a graph with N = 10 nodes. Due to space
limitations, visualizations of some typical outcomes from the
algorithm for different values of α and τ and three different

values of γ are displayed in the paper of arXiv version7 in
Figs. 4–6. For all of the metrics shown in Fig. 3, there is an
interesting behavior for the curve with “no virus,” in the sense
that it follows the same shape as the curves where the virus is
present, but is often shifted/delayed from them. This is due to
the “enhancing” effect from the virus spread on the installation
cost contribution.

For small values of α, due to the resulting cheap installation
cost, and for non-negligible performance values γ, the Nash
equilibrium is a very dense graph, often the complete graph KN ,
for all τ . (See Fig. 4 presented in paper7.) This reflects case 4)
in Theorem 5, although the interval for α, where KN is the only
Nash equilibrium would shrink (and may vanish) for small γ.
(See Figs. 5 and 6 presented in paper7.) In the latter case, the
corresponding PoAs in Figs. 2 and 3(g) have comparable shapes
and the obtained topologies are trees [see Fig. 3(h)], although
not necessarily star graphs. (See Fig. 6 presented in paper.7)

Because of the higher installation cost (higher α) in intervals
3) and 2) from Theorem 5, the Nash equilibria topologies are
sparse: in particular, nontree networks for γ = 5 (constant aver-
age number of links and sum of hopcounts) and mostly trees for
γ equal to 1 or 0.1. Consequently, the PoA linearly decreases
with α on this interval. For interval 1) in Theorem 5 (high in-
stallation cost), the PoA increases with α (and τ ), reaching a
local maximum and then has a different behavior for larger α.
Namely, it decreases toward 1 for small γ, while it is unpre-
dictable for higher γ [the left column, Fig. 3(a), (d), and (g)].
But most important, the effect of the epidemics part is noticeable
and higher τ introduces inefficiency, which is reflected by high
PoA. It is also important to note that for comparable α and γ,
the algorithm displays somewhat fluctuating behavior in terms
of PoA (middle row of Fig. 3) due to the heuristic nature of the
algorithm.

Being able to detect the intervals with high PoA, as we have
done in this section, means that for those intervals, some coor-
dination/incentives of and for the players is needed. Since the
PoS is generally low, in the best case with Nash equilibrium, a
small amount of coordination likely suffices. For the intervals
where the PoA is low, the selfish behavior of the players might
still lead to (near-)optimal topologies without any coordination.

IV. RELATED WORK

Virus spread in networks has been thoroughly explored dur-
ing the last decades [14]–[17], [24]. These works involve studies
ranging from virus-spread propagation, the computation of the
number of infected hosts [14] to the epidemic threshold [15]
in various epidemic models on networks. There is a large body
of literature on game formation, that mostly minimizes a cost
utility based on hopcount and the cost for installing links [3],
[4], [12], [19], [25]–[27]. Fabrikant et al. [12] have studied the
case where a node’s utility is a weighted sum of the installed
links and the sum of hopcounts from each node in an undi-
rected graph. The follow-up work by Albers et al. [19] resolved
some open questions from [12]. Chun et al. [4] have conducted

7http://www.arxiv.org/abs/1708.05908 at the end of the paper, after the bibli-
ography.

http://www.arxiv.org/abs/1708.05908
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Fig. 3. Simulation results of the heuristic algorithm for the obtained networks in a Nash equilibrium. The three regimes big, moderate, and small
τ are represented with values 5.2, 1.4, and 1, respectively. The number of nodes is N = 10. (a) Average price of anarchy (PoA) γ = 5. (b) Average
number of links γ = 5. (c) Average hopcount γ = 5. (d) Average price of anarchy (PoA) γ = 1. (e) Average number of links γ = 1. (f) Average
hopcount γ = 1. (g) Average price of anarchy (PoA) γ = 0.1. (h) Average number of links γ = 0.1. (i) Average hopcount γ = 0.1.

extensive simulations on the same type of game formation. A
game formation problem involving hopcounts and costs, ap-
plied to P2P networks, has been considered by Moscibroda
et al. [25]. Meirom et al. [28], [29] have provided dynamic and
data analyses (apart from their static analysis) in an NFG set-
ting with heterogenous players and robustness objectives. Nahir
et al. [27] have considered similar NFG problems in directed
graphs. Coalition and bilateral agreements between players in
NFG and game theory, in general, have been considered in [3],
[8], [30], and [31]. In order to evaluate “the goodness” of the
equilibria, the prices of anarchy and stability [26], [32] have
been used.

In this paper, we have considered virus protection aspects to-
gether with cost and the length of shortest paths. In this sense,
our work extends (with virus spread) and generalizes the related

work [12], [19], [27]. However, to the best of our knowledge,
NFGs concerning virus spread and protection both with or with-
out the performance aspects have not been considered in the
NFG framework, although security games [33]–[38] have been
used in modeling the virus spread suppression and network im-
munization. Performance aspects, represented by the hopcounts,
are linearly independent from the resilience to virus spread—the
two metrics do not possess closed-form expressions—making
the NFG problem challenging, apart from the novelty.

V. CONCLUSION

We have considered a novel NFG, called the VSPC game, for
communication networks in which the aspects link installation
costs, virus infection probability, and performance in terms of
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the number of hops needed to reach other nodes in the network;
all need to be balanced. We have characterized the Nash equi-
libria and the PoA for various cases. In most cases, the PoA is
not high, often close to 1, which implies that the decisions of
noncooperative players would lead, in a decentralized way, to
an optimal topology.

When the aspect of the shortest hopcounts is not important, we
have found that only trees (but not all) could be Nash equilibria.
In that case, surprisingly, a path graph is the worst- and the star
graph is the best-case Nash equilibrium for a big virus infection
rate τ , while it is the opposite for small τ . For intermediate values
of τ , other trees are optimal. The PoA is the highest for values of
τ just above the epidemic threshold. However, the PoA is gener-
ally small and close to 1, does not depend on the number of play-
ers, and is inversely proportional to τ and the installation cost α.

When the hopcounts do matter, the Nash equilibria might be
formed by more complex topologies. The PoA highly depends
on τ , the installation links, and hopcount costs α and γ, re-
spectively, as shown by both theory and simulation. Although
the PoA is small for most cases, for some intervals of those
parameters, the PoA could be high. Hence, a central control and
regulatory mechanism should be in place in such cases. Being
able to detect those intervals, as we have done, helps in the
design of optimal, efficient, virus-free, and cheap overlay P2P
or wireless networks by limiting the noncooperative freedom of
the hosts’ decisions.

There are several possibilities for follow-up work, such as
a study on mixed equilibria, player coalitions, inhomogeneous
costs, or time-varying networks.
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