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Abstract—Epidemic models like the SIS or SIR model enable
us to describe simple spreading processes over networks but
are often not sufficient to accurately capture more complex
network dynamics as exhibited by sophisticated and malicious
computer worms. Many of the common assumptions behind
epidemic models do not necessary hold if the process under
investigation spans big networks or large scales of time. We extend
the standard SIS network model by dropping the assumption of
a constant curing rate in favour of a time-dependent curing rate
function, which enables us to reflect changes in the effectiveness
of the active worm removal process over time. The resulting
time-dependent mean-field SIS model allows us to study the
evolution of the size of computer worm bot-nets. We exemplify
the complete procedure, including data-processing, needed to
obtain a reliable model on data from Conficker, an extremely
resilient computer worm. Using empirical data obtained from the
Conficker sinkhole, we fit long time periods of up to 6 years on
multiple scales and different levels of noise. We end by reflecting
on the limits of epidemic models in empirical analysis of malware
threats.

I. INTRODUCTION

Computer worms have become a serious threat for indi-
viduals and organizations in today’s Internet. While their local
mechanisms of propagation can be reverse engineered and are
well understood, their global impact remains hard to estimate.
Armed with the potential to spread indefinitely, not even the
authors of the worms might be able to predict how many
machines will end up compromised as part of a worm’s botnet.

While mathematical models for epidemics can be applied
to estimate the size of botnets over time [1], [2], many of
them rely on strong assumptions which might not be fulfilled
by the networks or the worms. This makes it especially hard
to fit empirically obtained data from measurements with those
models. Firstly, most worms start spreading undiscovered and
apply camouflaging techniques, so that data from the early
infectious periods are often lacking. Since infected machines
are subject to different up and down-times found in various
environments, a worm might appear or disappear any time.
Worms can also hibernate undetected on media like USB-
sticks, possibly allowing them to reinfect cleaned up machines.
To complicate matters even more, the spread of computer
worms is additionally influenced by humans that apply various
sorts of counter-measures, like patches, blocking of certain
IP address ranges or re-routing and filtering network traffic,
sometimes in very disruptive manners. Irregardless of counter-

measures, reinfection is always possible: reimaging or roll-
backs of work environments are common business procedures
who can easily return machines into susceptible states by
reintroducing vulnerabilities.

All these complex behaviours were observable for one of
the prime examples of a long-lasting continuous battle against
a maliciously growing computer worm: Conficker [3]. At its
highest peak, Conficker was estimated to had infected over 9
million of Windows machines worldwide1, creating one of the
largest botnets in the history of the Internet. The command
and control structure of this botnet was disrupted by using a
sinkhole [4], a server that intercepted all calls from infected
machine originally addressed to reach the bot-masters. The
log-files of the sinkhole allow us to view Conficker’s spread on
very different levels of granularity by filtering the infected IP
addresses by their autonomous systems (AS) and, for example,
aggregating them again to the level of individual countries.

Especially on AS-level, the data can be noisy and some-
times exhibit unexpected patterns, as the worm was removed
with varying effectiveness over time. To properly address this
data, an extension of the traditional epidemic models is needed,
which is able to describe the evolution of a worm over long
periods of time. Our main contribution is to propose a new
time-dependent mean-field SIS-model and apply it to the case
of Conficker. In particular, our work is structured as follows:

• In Section II, we describe some traditional epidemic
models used for computer worms and propose our new
and general time-dependent mean-field SIS-model,
which takes the aspects of reinfection and applied
countermeasures into account.

• Section III explains how the general model needs to be
further adjusted to the specific case of Conficker, how
the sinkhole data was processed and critically reviews
the legitimacy of our underlying model assumptions
when put into practice.

• Afterwards, we fit our model to the actual Conficker
data in Section IV. We show that our model deals
better with the inherent noise of the data by providing
high quality fits comparable to previously introduced
models. For special cases in which the decline of the
computer worm does not follow a strictly monotoni-
cally decreasing pattern, our model is still able to give

1http://goo.gl/9oaHEc (www.theregister.co.uk, Nov.2015)



a reasonable explanation of the data as it allows for
changes in the effective worm removal process, which
is not possible for monotonous models.

• Finally, Section V relates our model to previous work
on computer worm research, Section VI discusses
limitations of epidemic models for network security
in practice and Section VII concludes with possible
applications of the model and ideas on future research.

II. EPIDEMIC MODELS

This section describes classical epidemic models, which
we will later use as a reference, and introduces our main
contribution: the time-dependent mean-field SIS-model.

A. The population-based SIR-model

The population-based Susceptible-Infected-Removed (SIR)
model, originally described by Kermak and Mckendrick [5],
describes a spreading process in a fully mixed population,
for which the corresponding underlying graph is the complete
graph, in which each of the N individuals can be in one out of
three possible compartments: I for infected, S for susceptible
(to infection) or R for removed. The dynamics are described
by the following set of differential equations

dS

dt
=
−βSI
N

,
dI

dt
=
βSI

N
− δI, dR

dt
= δI (1)

where β is the infection rate and δ is the rate at which infected
individuals are removed from the population. Both β and δ are
assumed to be constant in classical SIR theory, in which case
set (1) was already solved analytically [5] in 1927.

Individuals in SIR either stay in compartment S or make
the transition S → I → R. Consequently, the number of
susceptible hosts over time is always monotonically decreasing
within this model. Similar to the SIS-model, which we intro-
duce next, also the SIR model can be generalized to contact
networks [6]. In this work however, we will use the simple
original SIR model defined over fully mixed populations as
a base-line for comparison with our more sophisticated time-
dependent model.

B. The network-based SIS-model

The network-based Susceptible-Infected-Susceptible (SIS)
model [7]–[9] is a Markovian model that describes a spreading
process with possible reinfection for an underlying contact
network. Each node of the network can be in two possible
compartments: I for infected or S for susceptible (to infection).
A network of N nodes can thus be in 2N different states.

Usually, two independent Poisson processes, each with
constant rate, determine the transitions between these states.
The infection process determines for each susceptible node
its transition to the infected compartment dependent on the
number of infected neighbors. A node can only become
infected if it shares a link to an already infected node.
Each infected neighbor contributes with an infection rate of
β to the infection. The curing process determines for each
infected node its transition from the infected to the susceptible
compartment with a corresponding curing rate δ.

As the state-space of the SIS Markov model grows expo-
nentially in N , computing the probabilities of infection per
node becomes quickly intractable for large networks. Mean-
field approximations [7], [8], [10] are a common tool to
reduce the size of the governing equations and make them
amenable for analytic solutions. The N-Intertwined mean-
field approximation model [11] (NIMFA) is currently the best
continuous-time, first-order mean-field approximation. Given a
fixed network, NIMFA approximates the probability vi(t) that
a node i is infected at a certain time t by

dvi(t)

dt
= −δvi(t) + β(1− vi(t))

N∑
j=1

aijvj(t). (2)

These equations can be solved to determine the steady-state
infection probability vi∞ of each node i, where dvi(t)

dt = 0
and from which the average steady-state fraction of infected
nodes

y∞ =
1

N

N∑
i=1

vi∞

can be computed.

If an r-regular graph2 is considered as the underlying
contact network, the infection probability is the same for each
node due to symmetry: vi(t) = v(t) = y(t). Thus, the equation
(2) simplifies to

dy(t)

dt
= βry(t)(1− y(t))− δy(t) (3)

The particular equation (3) was studied by Kephard and
White [12], who gave the solution

y(t) =
y0y∞

y0 + (y∞ − y0)e−(βr−δ)t
(4)

where the evolution of the fraction y(t) of infected nodes
is described by the initial fraction y0 of infected nodes and
the steady-state fraction of infected nodes y∞ = lim

t→∞
y(t).

While equation (3) only holds for regular networks, it gives
an excellent starting point for the development of a time-
dependent model, as we will see in the next subsection.

C. The time-dependent mean-field SIS-model

If the source for an infection or for curing is not constant,
the fixed rates β and δ have to be transformed into functions
β(t) and δ(t) to describe the rates for the infection and curing
processes at any time t. The time-dependent extension of (3)
is

dy(t)

dt
= β(t)ry(t)(1− y(t))− δ(t)y(t). (5)

While the exact Markovian SIS dynamics seem to be im-
possible to solve for time-dependent rates, even for highly
symmetric cases as the complete graph, Van Mieghem [13]
shows that the differential equation (5) can be solved exactly

2A graph G is r-regular if each node in G has degree r.



to determine the evolution of the fraction of infected nodes
y(t) over time by

y(t) =
exp

(∫ t
0
(rβ(u)− δ(u))du

)
1
y0

+ r
∫ t
0
β(s) exp

(∫ s
0
(rβ(u)− δ(u))du

)
ds
. (6)

A convenient short-hand is to define the net dose as

ρ(t) =

t∫
0

(rβ(u)− δ(u))du (7)

which equals the net average number of infections reduced by
all curings in a time interval [0, t] for a particular node in the
r-regular graph. Using the net dose (7), equation (6) becomes

y(t) =
eρ(t)

1
y0

+ r
∫ t
0
β(s)eρ(s)ds

. (8)

The main quantities in (8) are the degree of the regular network
r, the initial fraction of infected nodes y0, the time-dependent
infection rate function β(t) and the curing rate function δ(t).
We describe in subsection IV-A how the parameters {r, y0}
and the functions {β(t), δ(t)} can be determined to match the
infection curve of the Conficker worm. For the remainder, we
will refer to this model in short as the time-dependent SIS-
model.

III. METHODOLOGY

This section outlines the necessary steps before applying
any epidemic model (like the ones introduced before) to
measured data from a sinkhole. We will first describe the
Conficker data, how it was processed and why we think that the
time-dependent SIS-model is a reasonable choice to describe
the propagation of the worm.

A. Datasets

All data of the Conficker worm is based on logfiles from the
sinkhole. The sinkhole was used to disrupt the update mech-
anism of Conficker, which connected to 250 pseudorandomly
generated URLs in order to get payload (i.e. instructions,
malware or new functionality) from its original authors. By
registering the domain names before the botmasters, and
redirecting every access to a central server (the sinkhole), the
worm was effectively cut off from its authors.

There were some partially successful attempts of the bot-
masters to regain control over the Conficker botnet, made
possible due to mistakes during the sinkholing process. This
resulted in new variants of the worm, which employed a
more sophisticated update mechanism. However, after April
2009 the botnet remained under control. From this perspective,
Conficker provides an interesting case study of the propagation
of an unaltered computer worm over a reasonably long period
of time.

In total, the sinkhole logfiles provide us data from February
2009 to September 2014 and contain over 178 million unique

IP addresses. With the help of GeoIP-databases3 and IP-to-
ASN-lookup4, these IP addresses were associated with the
corresponding ISO country code and autonomous system (AS).
Thus, the data can be viewed at different levels of granularity:

• global: all unique IPs for the complete sinkhole world-
wide

• country: all unique IPs belonging to a specific ISO
country code

• autonomous system: all unique IPs belonging to a
specific AS

In total, the IPs belong to 241 different ISO country codes
and to over 34.000 different autonomous systems.

B. Preprocessing

Botnet size estimation: Accurate estimations of the
amount of infected machines is a difficult problem (see Abu
Rajab et al. [14]), as long as our only way for identification
of a machine is via its IP address. On the one hand, it is
possible to undercount because multiple infected machines
might share a common IP address due to Network address
translation (NAT). On the other hand, a single infected machine
might be represented by multiple IP addresses due to different
ISP policies. To avoid this overcounting, the number of IP-
addresses needs to be corrected by a DHCP-churn rate, which
varies over countries and ISP. Determining accurate DCHP-
churn rates is a challenge in itself (see Moreira et al. [15]),
which we will not undertake here.

Instead, we aggregate the unique IP-addresses over short
time slots of one hour. We consider the DHCP-churn effect on
this time scale to be minimal. Using short time slots introduces
another source of undercouting because not every infected
machine might be contacting the sinkhole every hour (for
example they might not be powered). The hourly values are
then averaged out over a time slot of a week, eliminating biases
introduced by diurnal patterns. Accordingly, together with the
NAT-effects, our estimate of the infected machines should be
considered as a lower bound.

Data cleansing: While analyzing the sinkhole data,
missing measurements become apparent as there are several
periods ranging from a few hours to a few days in which
the number of IPs drops down to zero. We account techni-
cal malfunctions of the infrastructure (i.e. downtime of the
sinkhole) for these artifacts. Consequently, we remove these
outliers before applying any model fitting by the following
procedure: for each datapoint z of week w, we compute the
difference between z and the median of all datapoints in a time
window spanning ±10 weeks from w. From all datapoints, we
exclude the 10% with the highest differences. This procedure
does not remove all outliers for all cases, but reduces their
impact on the fitting procedure considerably.

Normalization: In order to apply the time-dependent
epidemic model (5), the data need to be normalized, because
y(t) describes the average fraction of infected nodes and not
the number of infected nodes in the networks. An accurate

3http://maxmind.com/app/geoip country
4https://github.com/hadiasghari/pyasn



normalization would use the amount of vulnerable machines,
which is not known to us. In fact, the Conficker worm spreads
only in unpatched versions of all major Microsoft Windows
versions up to Windows Vista and Server 2008, for which we
have not found reliable estimates. Instead, we use the peak
point of infection to generate a relative scaling. After the
aggregation and data cleansing, we determine the maximum
number pmax of infections over the whole infectious period
and compute the scaling factor sy by

sy =
k

pmax
(9)

where k is a real number between 0 and 1. For our fitting
procedure, a value of k = 0.9 proved to be sufficient and was
used if not stated otherwise. The scaling factor sy can be used
to fit the original data as we will discuss in subsection IV-A.

We use a bin size of one week to count the unique IPs,
resulting in 280 bins for the complete infectious period. This
period is linearly transformed on the horizontal axis so that
the starting point of the infectious period maps to 0 and the
end point maps to 1.

C. Model Assumptions

The dynamics of the Conficker-spread are heterogeneous,
because different infection vectors are invoked to infect new
machines and networks. For example, a person might obtain
the worm by plugging out his USB-stick from an infected
computer. Much like an actual biological disease, this person
could traverse large amounts of space and time before he
triggers a new infection with his USB-stick on a different
machine. This and similar effects make the construction of
an actual (dynamic) contact network impossible. Considering
the extremely large scale of the Internet and the long period
of time (6 years), it seems completely unreasonable to assume
that any (simple) model would be able to reflect this degree
of complexity.

However, the time-dependent mean-field SIS-model (5) can
be refined to capture the basic observable infection patterns.
In order to justify the refined model, we review the basic
assumptions and argue to which extent they are adequate in
the case of Conficker.

Constant spreading rate: As Conficker was discon-
nected from its authors by the sinkhole, its code remained
largely constant for the whole infectious period. There exist
some updated versions of Conficker (named Conficker C, D
and E) at the very beginning of the logged infectious period
(up to April 2009), but these updates were used to improve
the command and control structure of the worm and to add a
scareware payload to it. The main infection vectors (NetBIOS
vulnerability, USB-sticks and Shared Folders) remained largely
unaffected by these changes. It is thus safe to assume, that the
spreading rate of Conficker remained constant. For this reason,
we will set β(t) = β in equation (5).

Time-dependent curing rate function: Contrary to the
infection rate β(t), we assume that the curing and removal
forces were not constant. In general, the clean-up of Conficker
was regarded to be rather involved as the worm possessed

several counter-measures. The curing rate function δ(t) of
our model (5) reflects the combined effort that was spent
to fight Conficker, i.e. by patching the vulnerability, use of
removal tools and also the replacement of infected machines.
As some of the countermeasures did not provide complete
immunity, reinfection with Conficker was possible and is well
documented [3]. This effect is reflected by the basic SIS
dynamics. Next to SIS, our model is able to simulate removal
as in the SIR-model [8] by increasing the curing rate of a node.
Once a node’s curing rate is very high, its infectious periods
become very small, which can be regarded as a removal or
immunization effect. Although our model (5) never explicitly
removes nodes from the network, the time-dependent curing
rate blends both SIS and SIR-dynamics and thus captures
effects like permanent removal of machines or an acquired
immunity, for example by system upgrades without excluding
reinfection dynamics like SIR.

Network topology: The equation (5) of the time-
dependent mean-field SIS-model demands an underlying and
constant contact network of degree r. This is a necessity from
a model point of view, as computation would quickly become
intractable otherwise. While the Internet is clearly not constant
in its size, we justify the regularity assumption by one of
the infection vectors of Conficker. The technical reports (see
Porras et al. [16]) suggest that Conficker used a scan-and-infect
subroutine that occasionally scanned random IP-addresses5 for
new victims. The worm did not flood the complete IP-space
but concealed itself by connecting only to a limited amount of
possible new victims. Thus, for the fixed allocated time-slots
that we investigate, we assume that there is an upper bound
on the possible scan-attempts for an infected machine, which
is independent of the configuration or network properties (e.g.
bandwidth). This upper bound translates into an estimate on
the degree of the underlying contact network, which is our
parameter r.

IV. MODEL APPLICATION

A. Modeling the spread of Conficker

The key to a good epidemic model of Conficker is to
determine the time-varying parts of equation (8), namely the
spreading rate function β(t) and the curing rate function δ(t).
As argued before, we assume β(t) = β as constant, so that
the net dose ρ(t) in (7) simplifies to

ρ(t) = rβt−D(t)

where D(t) =
t∫
0

δ(u)du is the accumulated curing dose. If we

assume D(t) to be an analytic function, there exists a Taylor
series that allows us to express D(t) precisely. The Taylor
expansion is truncated after d terms to retrieve a polynomial
approximation

D(t) =

t∫
0

δ(u)du ≈
d∑
i=0

ait
i (10)

5Due to a bug in the pseudo-random number generator of Conficker, only
one fourth of the complete IP-address space was susceptible for this attack
vector.



with ad 6= 0. We use the last two equations to transform
equation (8) as

y(t) ≈
exp

(
rβt−

d∑
i=0

ait
i

)
1
y0

+ r

∫ t

0

β exp

(
rβs−

d∑
i=0

ais
i

)
ds

=

exp(−a0) · exp
(
rβt−

d∑
i=1

ait
i

)
1
y0

+ exp(−a0) · rβ
∫ t

0

exp

(
rβs−

d∑
i=1

ais
i

)
ds

=

exp

(
rβt−

d∑
i=1

ait
i

)
exp(a0)
y0

+ rβ

∫ t

0

exp

(
rβs−

d∑
i=1

ais
i

)
ds

.

We define the products ya0 = y0 · e−a0 and βr = rβ to
simplify the model further. Thus, the free parameters of our
model are ya0 , βr and ad, . . . , a1. In order to apply the model
to absolute values rather than fractions, we apply the scaling-
factor from equation (9):

y(t) =
eρ̃(t)

sy

(
1
ya0

+ βr
∫ t
0
eρ̃(s)ds

) with ρ̃(t) = βrt−
d∑
i=1

ait
i.

(11)

Since we are interested in the dynamics and not in absolute
values, we will set sy = 1 for simplicity. Consequently, in
all the Figures showing model fittings, the maximum value
will always be found at y = 0.9 (recall Section III-B,
Normalization). In summary, the model is given by

y(t) =
eρ̃(t)

1
ya0

+ βr
∫ t
0
eρ̃(s)ds

with ρ̃(t) = βrt−
d∑
i=1

ait
i.

(12)

Given the preprocessed and cleansed data as input, the
trust-region non-linear least squares method provided by MAT-
LAB is used to fit our model. The initial values for all para-
meters were picked randomly between zero and one. Then, the
polynomial of degree 3 was fitted first. The parameters found
for this fit were used as initial guesses to fit the polynomial of
degree 4, which significantly improved the convergence speed.
The same procedure was applied to create the fit for degree 5,
based on the fit of degree 4.

B. Quality of fits at global scale

The degree of freedom of the proposed model for Conficker
is 2 + d, where d is the order of the polynomial curing rate
function (10). Thus, we are able to trade the complexity of
the model with its accuracy. In a first experiment, we examine

TABLE I. FITTING PARAMETERS FOR GLOBAL MODEL ON
CONFICKER, 95% CONFIDENCE BOUNDS IN PARENTHESIS.

d 2 3 4

βr 23.5 (19.55, 27.45) 12.03 (10.98, 13.08) 7.304 (5.656, 8.952)
va0 0.333 (0.287, 0.379) 0.3554 (0.3396, 0.3712) 0.3703 (0.3556, 0.385)
a1 -1.17 (-1.64, -0.692) -5.572 (-5.813, -5.331) -7.597 (-8.23, -6.964)
a2 16.06 (14.1, 18.02) 23.29 (22.48, 24.11) 31.05 (28.61, 33.49)
a3 - -10.33 (-10.79, -9.863) -28.07 (-33.43, -22.7)
a4 - - 9.646 (6.713, 12.58)

which value of d is useful for modelling the underlying data.
We use the global aggregation of all worm infections as input,
because it has less noise than data from country- or ASN-
level granularity. Figure 1 shows how the quality of the fit
and of the prediction bounds improves by using higher degree
polynomials. The adjusted R2-value is 0.96 for d = 2 and
0.99 for d ≥ 3, indicating a good fit overall. However, a visual
inspection reveals that the fit for d = 2 is not good enough
to accurately describe the decline of the worm. On the other
hand, d = 4 does not provide much more quality, but requires
an additional fitting parameter. Thus, guided by parsimony as
a modelling rule, we believe that d = 3 is a good choice for
this particular case. Table I gives the actual values of the fitted
parameters.

Fixing d = 3 results in 5 parameters that need to be
determined by the fitting procedure. This is one parameter
more than we would use to fit the population-based SIR-
model, which is also shown in Figure 1d for comparison. More
specifically, the parameters used for the SIR-model are the size
of the population N , the constant infection rate β, the constant
curing rate δ and the initial number of infected individuals v0.
As the adjusted R2-value for SIR is with 0.99 qualitatively
very high and on the same level as for d = 3, SIR is an even
more parsimonious model that works very well on global scale.

C. Quality of fits at subglobal scales

Moving from global-level to country-level, we have more
noise and variation in the data since not all countries were
affected by Conficker in the same way. Out of the 241 different
ISO countries, we picked a subset of 40 countries (belonging
to the OECD and the European Union) to analyse. We used
again SIR as a baseline and compared it with fits of order
d = 3, 4 and 5. We chose the adjusted R2-value and the sum
of squared errors (SSE) as indicators for the quality of fit.
Figure 2 shows the distribution of those indicators for the 40
chosen countries sorted by their corresponding quality in the
SIR-model. The fits of the Conficker-model are of high quality
and only in 3 cases worse than the corresponding SIR-model.
We believe that the fitting procedure converged sub-optimally
in those cases, as 7 parameters needed to be determined, while
lower order fits were still better than SIR or equally good. A
visual inspection of the fits showed that the time-dependent
SIS-model is able to fit the tail better than SIR. The latter is
forced to monotonically decline in this area while the time-
dependent SIS-model can better adapt to nearly constant viral
levels which are observable in the tails of the data for some
of the countries.

Moving down to the ASN-level imposes a bigger challenge,
since the number of infected IPs becomes so low that the
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Fig. 1. Global-level fitting of Conficker in time-dependent SIS and SIR model. Dotted curves are the 95% prediction bound

influence of noise grows more significant. To circumvent this
problem, we selected the 30 ASNs with the highest number
of infected unique IPs out of 34000 available for our analysis.
Still, the data for some of these ASNs is considerably more
distorted than any country-level data. While gaps of missing
data on country-level usually span a couple of weeks, they can
spent months or even years for some of the ASN datasets. We
expect that some sort of ISP-wide countermeasures were used
to prevent infected machines during those times to connect to
the sinkhole, though we did not find evidence for this claim.

The data-cleansing procedure is not sufficient to remove
all outliers completely, so they inevitably impact the quality
of the models. Figure 3 shows the results in the same way as
we did for the country-level. Some of the fits are not visible as
they are of so low quality (R2 < 0.9 or SSE > 2) that they are
outside our scale. We ordered all data after the quality of the
SIR-fit nevertheless. The variation in quality is much higher
than it was for the country-level: 4 out of 30 ASNs were so
degenerated that every model produced only poor fits. Similar
to the country-level, we observe the time-dependent SIS-model
to be better than SIR, though with a higher relative qualitative
difference than on country-level. This is not unexpected as
models with more degrees of freedom adapt more easily to
noise in general. A visual inspection of the fits on the ASN-
level showed that in not degenerated cases (i.e. high jitter or

very large gaps) the models still give a fairly good description
of the spreading pattern.

D. Determining the effectiveness of worm removal

While fitting the absolute or relative number of infected
IPs gives a comprehensive overview about the prevalence
y(t) of Conficker, the time-dependent SIS-model allows for
an additional perspective. To gain more insight in the worm
removal, we look closer to the curing rate function δ(t) and
understand, what it actually means. While changes in the
curing rate can be easily interpreted as changes in the applied
counter-measures against the worm, we have to keep in mind
that the most effective counter-measures were already in place
before the sinkhole recorded its data. More precisely, the
NetBIOS vulnerability was patched very fast in November
2009, 4 months before our data collection starts. However,
Conficker was remarkably resilient, raising the question why
the worm could survive despite the patch for years?

If we assume that the slow decline of the worm is, to a
large amount, not caused by security patches but by long-
term effects like failure or substitution of infected machines
with newer ones, it seems reasonable that the population-based
SIR-model gives a fairly good description of the process. By
looking at the curing rate function δ(t) and the accumulated
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Fig. 3. Overview of ASN-level fitting quality, ordered by SIR.

curing dose D(t) obtained by the fits of the time-dependent
SIS-model, we can analyse at which periods in time the
removal of the worm changed. We call the time pattern given
by δ(t) the effective worm removal.

Figure 4 shows δ(t) and D(t) obtained by the fits on the
global aggregation level. It is interesting to see that δ(t) seems
to approach a sigmoidal shape in the interval [0, 1] once we
increase the degree of the polynomial. A sigmoidal effective
worm removal starts very low, describing a time-period in
which the worm is persistent and spreads unhampered. How-
ever, this is followed by a sharp increase in curing rate, which
leads to a rapid decline in the worm prevalence. Finally, the
sigmoidal shape reaches a saturation of high curing rates,
which explain the low levels of persistence in the later phases
of the worm evolution and the long period of final decline.

E. Sensitivity of parameters

For d = 3, the time-dependent SIS-model is determined
by 5 parameters: a3, a2, a1, βr and ya0 . Since y(0) = ya0 , the
meaning of ya0 is clear: it defines the initial fraction of infected
IPs and thus the starting point for the spreading process.
However, it is not obvious how the course of the infection
is influenced for t > 0 by a3, a2, a1 and βr? To investigate
this further, we collected all values that occurred for those
parameters while fitting each country-level dataset. To avoid
outliers, we computed for each parameter the 10% and 90%-
percentile. The range between both values was divided linearly
so that we end up with 5 evenly spread out values for each
parameter, which are representative for the fits. We used the
median of those 5 values to define a reference curve and
adjusted each parameter separately to see how sensitive the
model is to changes. Results are shown in Figure 5.

The coefficients a3, a2, a1 have dominant influence on
different phases, with a3 being dominant at the later stages,
a2 in the middle and a1 at the beginning. The curvature of the
infection itself is strongly influenced by βr, which regulates
the height of the peak and the decline of infection. During the
fitting procedure, these 4 parameters are balanced out against
each other. For example: increasing βr makes for a much flatter
decline in worm prevalence, but also moves the peak higher.
If the data suggests a flat decline but a low peak, βr should
be high but also with a high a1 to correct the peak.

An intriguing property of the time-dependent SIS-model
is the fact that it is not monotonous unlike the SIR model:
by decreasing a3 or increasing a2, it is possible to have an
increase in worm prevalence after the maximum peak. While
this behaviour is - for the case of Conficker - not observable
on country-level, there are some rare occurrences on AS-
level that suggest such a behaviour may occur in practice.
Figure 6 shows with AS8452 such an example and shows the
corresponding fits of the non-monotonous time-dependent SIS
model in comparison to the monotonous SIR model.

V. RELATED WORK

In a previous work by Asghari et al. [17], the same dataset
for Conficker was analyzed to show the effectiveness of anti-
bot net campaigns in different countries. The focus of our
current work is different: we develop a very general epidemic
model to describe time-dependent propagation and use the
Conficker data as an example to show the applicability of such
an approach. In contrast, the previous work started with the
data of Conficker and developed a non-epidemic descriptive
model to extract features of the worm prevalence on country-
level. Those features were then correlated with different insti-
tutional factors (broadband access, operating system market
shares, software piracy, etc.) to explain regional difference
between the countries.

Epidemic models have already been investigated for de-
scribing spread of computer worms [2], [18]–[20], mostly
by extending SIS or SIR-models. Some of those models are
not directly comparable to this work, as they are based on
very different assumptions. For instance, the WPM model by
Peng et al. [21] emphasizes strongly on network topology and
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monotonous data from AS 8452. Right: The time-dependent SIS model with
d = 3 already provides more flexibility to address those issues.

uses 2d-cellular automatons to describe propagation. Another
model, the two-factor worm model by Zou et al. [22] assumes
dynamic changes in the spreading rate, as it was used to
describe the propagation of the Code Red computer worm,
who literally exploded over the Internet within a day compared
to the more subtle Conficker that was designed to be much
more hideous. Moreover, the two-factor worm model needs 4
different compartments and 6 free parameters, which makes
the actual fitting for this model much more involved than for
the time-dependent SIS.

Zhang et al. [23] extend the basic SIR model to a hybrid
epidemic model, which is evaluated on data from Conficker
as well. Their model considers multiple ways of infection
(globally and locally) and thus does not assume - like our and
many other works - that Conficker only spread via its scan-
and-infect subroutine. However, the counter-measures and the
curing was not in their focus, as no change in curing rate was
incorporated. Our work is complementary in the sense that it

could be part of new hybrid epidemic models to give a stronger
focus on multiple sources of countermeasures.

VI. DISCUSSION

Epidemic models have many proponents in the security
community. The success of these models in studying human
epidemics might have served as the inspiration. They have
certainly enabled researchers to think and theorize about coun-
termeasures, and simulate their effects on malware outbreaks.
This paper also contributes to this literature. It presented a
time-dependent SIS-model that approximates the Conficker
worm over long periods quite well, even at the AS-level.

Can epidemic models also help in analysing security prac-
tices from past malware outbreaks? For this ambition to be
realized, you need to be able to interpret the parameters of
any model, after applying it to empirical data. Herein lie
two fundamental challenges: model assumptions and parameter
sensitivity.

Our time-dependant SIS-model has fewer assumptions than
traditional models. Yet it still assumes constant spreading rate
and topology. These assumptions are unlikely to hold over
long timeframes and many networks. What do the parameters
mean in such a case? Furthermore, multiple combinations of
parameter values often generate similar trends. This makes it
nearly impossible to draw security insights with confidence.
Increasing model parameters to reduce assumptions will make
matters worse.

The underlying problem are the latent model parameters
that cannot be measured from existing infection data. It should
not be a surprise that papers using epidemic models are often
theoretical, or use datasets that are spatially or temporally



limited (e.g. weeks, or one network). To bridge the gap
between these models and empirical data, research on how
to measure or estimate the latent parameters is needed.

VII. CONCLUSION AND FUTURE WORK

In this work, we showed how epidemic models can be
designed to describe the complex propagation and decline
patterns of long-lasting computer worms with Conficker as
a showcase. The time-dependent SIS model has shown to be
useful on scales where the SIR model could no longer provide
the best fit due to its inherent limitations. SIR might still be
a good choice if the worm data is smooth and shows a clean
monotonous decline, but the time-dependent SIS model should
be preferred if any of these conditions is violated. Changing
the degree of the polynomial curing rate function allows for a
more flexible approach, when it is needed.

For example, if we assume that future worms will have the
ability to adapt (for example by some evolutionary process),
they might also develop an immunity against certain counter-
measures in which case a non-monotonous curing rate function
could be used to model this behaviour. It is possible, to apply
the time-dependent SIS model also for worms with changing
spreading rates: one only needs to define a time-dependent
infection rate function β(t) analogously to δ(t).

From a theoretical perspective, the fact that both the SIR
and the time-dependent SIS model can fit the same data is
surprising as well and might suggest SIR being a special case
of SIS with time-dependent curing or infection rate functions.
Possible future work could investigate the relationship between
both models. Because of the monotonicity of SIR it is clear that
not every propagation pattern of the time-dependent SIS model
can be reproduced by SIR. However, it might be possible
that there exists a mapping from the parameters of the SIR
model to the parameters of the time-dependent SIS model in a
way that the SIR propagation patterns can be (approximately)
reproduced.

On a more practical level, our work could provide some
building blocks for the development of novel worm tracking
systems that would monitor the current effective removal
over time. There might also be suitable applications outside
the domain of computer worms for which a time-dependent
epidemic model like ours could be applicable. Examples
could include diffusion of technologies, spread of memes,
or fighting darknet websites – where various measures and
counter-measures over time influence the diffusion pattern.
While very different scenarios, it would be interesting to see
whether network epidemic models are still applicable or not.
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