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Abstract—In this paper, we propose closed-form analytic ap-
proximations for the minimum number of driver nodes needed
to fully control networks, where links are removed according to
both random and targeted attacks. Our approximations rely on
the concept of critical links. A link is called critical if its removal
increases the required number of driver nodes. We validate our
approximation on both real-world and synthetic networks. For
random attacks, the approximation is always very good, as long
as the fraction of removed links is smaller than the fraction of
critical links. For some cases, the approximation is still accurate
for larger fractions of removed links. The approximation for an
attack, where first the critical links are removed, is also accurate,
as long as the fraction of removed links is sufficiently small.
Finally, we show that the critical link attack is the most effective
among 4 considered attacks, as long as the fraction of removed
links is smaller than the fraction of critical links.

I. INTRODUCTION

Our society nowadays depends critically on the proper
functioning of a variety of infrastructures, such as the Internet,
the power grid, water management networks and mobile
communication networks. It is common practice to model
such infrastructures as complex networks. Research over the
last decades has led to a deep understanding of structural
and robustness properties of complex networks [1], [2]. In
recent years, the emphasis has shifted to understanding the
controllability of such networks [3] [4] [5] [6]. Controllability
is an essential property for the safe and reliable operation of
real-life infrastructures. A system is said to be controllable
if it can be driven from any initial state to any desired final
state by external inputs in finite time [6]. Merging classical
control theory with network science [7] introduced the notion
of structural controllability. Let the N×N matrix A represent
the network’s wiring diagram, while the connection of M
input signals to the network is described by the N ×M input
matrix B, where M ≤ N . Then, the system characterized by
(A,B) is said to be structurally controllable, if it is possible
to fix the non-zero parameters in A and B in such a way that
the obtained system (A,B) is controllable in the classical
sense of satisfying Kalman’s rank condition. Liu et al. [3]
found a method that gives the minimum number of driver
nodes, which are driven by external inputs, that are needed
to achieve structural controllability of a directed network. As
was pointed out by Cowan et al. [8], the results reported in
Liu et al. [3] critically depend on the assumption that the

network has no self-links, i.e. a node’s internal state can only
be changed upon interaction with a neighbor. In this paper,
we will also assume this condition. Ruths et al. [9] developed
a theoretical framework for characterizing control profiles of
networks. Yuan et al. [4] further proposed the concept of
exact controllability based on the maximum multiplicity of
all eigenvalues of the adjacency matrix A to find the driver
nodes in networks. Jia et al. [5] classified each node into
one of three categories, based on its likelihood of being
included in a minimum set of driver nodes and discovered
bimodal behaviour for the fraction of redundant nodes,
when the average degree of the networks is high. Nepusz
et al. [6] indicated that most real-world networks are more
controllable than their randomized counterparts. Yan et al.
[10] investigated the relation between the maximum energy
needed for controllability and the number of driver nodes.

Real-world networks are often confronted with topological
perturbations such as link-based random failures or targeted
malicious attacks. For instance, in power grids, the breakdown
of connections between different substations in some cases
can be interpreted as random failures due to circuit aging or
natural disasters. Malicious, and targeted attacks can seriously
degrade the network performance [11]. In transportation net-
works, betweenness centrality-based targeted attacks can have
a significant impact on normal operation [12].

Network robustness under topological perturbations has
been widely investigated. The effective graph resistance [13],
the viral conductance [14], the size of giant component [15],
betweenness and eigenvector centrality are computed to mea-
sure the robustness of networks under topological perturba-
tions. Wang et al. [16] investigated two interconnection topolo-
gies for interdependent networks and proposed the derivative
of the largest mutually connected component as a new robust
metric, which addresses the impact of a small fraction of
failed nodes. Trajanovski et al. [17] studied the robustness
envelope and concluded that centrality-based targeted attacks
are sufficient for studying the worst-case behavior of real-
world networks. Koc et al. [18] found that increasing the
effective graph resistance of synthetic power systems results
in decreased grid robustness against cascading failures by
targeted attacks.

The robustness of the network controllability can be as-



sessed by quantifying the increase in the minimum number of
driver nodes ND, under perturbation of the network topology.
The impact of topological perturbations on the controllability
of networks has been investigated extensively in recent years.
Pu et al. [19] found that the degree-based node attack is more
efficient than a random attack for degrading the controllability
in directed random and scale-free networks. Nie et al. [20]
found that the controllability of Erdős-Rényi random graphs
with a moderate average degree is less robust, whereas a
scale-free network with moderate power-law exponent shows
a stronger ability to maintain its controllability, when these
networks are under intentional link attack. Thomas et al. [21]
identified that the potency a degree-based attack is directly
related (on average) to the betweenness centrality of the edges
being removed. Lu et al. [22] discovered that a betweenness-
based strategy is quite efficient to harm the controllability
of real-world networks. Mengiste et al. [23] introduced a
new graph descriptor, ‘the cardinality curve’, to quantify the
robustness of the control structure of a network to progressive
link pruning.

The previous works on the robustness of network controlla-
bility listed above, have been mainly based upon simulations.
In this paper we quantify the robustness of network controlla-
bility by deriving analytical expressions, approximating the
increase of the number of driver nodes, upon random and
targeted link removals. Based upon methods from statistical
physics, Liu et al. [3] already found analytical approximations
for the number of driver nodes ND, as a function of the
nodes in- and out-degree distributions. However, the obtained
expressions are an implicit set of equations, which are derived
under the assumptions of N →∞ (thermodynamic limit) and
sufficiently large average node degree.

We propose an analytical approximation to quantify the
robustness of network controllability, based upon the concept
of critical links, introduced in [3]. A link is said to be critical
if its removal increases the minimum number of driver nodes
ND. We derive analytical approximations for the minimum
number of driver nodes ND as a function of the fraction of
removed links, both for random and targeted attacks. We show
the performance of our approximations in both real-world and
synthetic networks. Finally, we compare an attack based upon
crictial links, to attacks based upon topological properties,
such as the out-in degree-based attack.

This paper is organized as follows. In Section II, we
introduce some basic concepts and definitions in network
controllability proposed in [3]. In Section III and IV, we
propose analytic approximations for the minimum number of
driver nodes ND when the network is under random attacks
and targeted attacks, respectively. In Section V, we compare
the robustness of controllability under four different attack
methods. Section VI concludes the paper.

II. CONTROLLABILITY OF NETWORKS AND DRIVER NODES

A. Controllability of networks

A system is controllable if it can be driven from any initial
state to any desired final state by proper variable inputs in

finite time [24]. Most real systems are driven by nonlinear
processes, but the controllability of nonlinear systems is in
many aspects structurally similar to that of linear systems [3].
We consider a linear, time-invariant dynamics on a directed
network, which is described by:

dx(t)

dt
= Ax(t) +Bu(t) (1)

where the N × 1 vector x(t) = (x1(t), x2(t), ..., xN (t))T

denotes the state of the system with N nodes at time t.
The weighted matrix A is an N × N matrix which describes
the network topology and the interaction strength between
the components. The N × M input matrix B identifies the
M ≤ N nodes controlled by input signals. The M × 1 vector
u(t) = (u1(t), u2(t), ..., uM (t))T is the input signal vector.

The linear system defined by equation (1) is controllable, if
and only if the N× NM controllability matrix:

C = (B,AB,A2B, ..., AN−1B) (2)

has full rank, i.e., rank(C) = N . This criterion is called
Kalman’s controllability rank condition [25]. The rank of
matrix C provides the dimension of the controllable subspace
of the system. We need to choose the right input matrix B
consisting of a minimum number of driver nodes to assure that
the controllability matrix C has full rank. System (1) is said to
be structurally controllable if it is possible to fix the non-zero
parameters in A and B in such a way that the obtained system
(A,B) satisfies Kalman’s rank condition. We assume that A
has no self-loops, i.e. all entries in the diagonal of A are zero.

B. Driver nodes and critical links

Liu et al. [3] proved that the minimum number of driver
nodes needed for structural controllability, where the input
signals are injected to control the directed network, can be
obtained through the “maximum matching” of the network.
Define the source node of a directed link as the node from
which the link originates and the target node as the node
where the link terminates. A maximum matching of a directed
network is a maximum set of links that do not share source or
target nodes [26], which is illustrated in Figure 1(a). Such links
are coined “matching links”. Target nodes of matching links
are matched nodes and the other nodes are unmatched nodes.
For a given maximum matching, connecting driver nodes with
unmatched nodes gives a minimum number of driver nodes
ND needed for controlling the network.

In order to find the maximum number of matching links, so
as to determine the minimum number of driver nodes ND,
a directed network G with N nodes and L links can be
converted into a bipartite graph BN,N with 2N nodes and
L links, as shown in Figure 1(b). A maximum matching in
a bipartite graph can be obtained efficiently by the Hopcroft-
Karp algorithm [27]. The unmatched nodes in a maximum
matching constitute a minimum set of driver nodes. It is worth
noting that a minimum set of driver nodes is not necessarily
unique. The Hopcroft-Karp algorithm guarantees to return the
minimum number of driver nodes to completely control the
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Fig. 1. Driver nodes and critical links in a directed network G. (a) An example
network G with N = 5 nodes and L = 5 directed links. Since link a, b, c
and d are the maximum set of links that do not share source and target nodes,
these links are matching link. Target nodes of these matching links, i.e., node
2, 3, 4 and 5, are matched nodes. Node 1 is an unmatched node. (b) The
bipartite graph with 2N nodes and L links. Matching links are highlighted in
red in the bipartite graph. Driver nodes are highlighted in green. To create the
bipartite graph, each node V in the original network G will be translated into
source node V+ and target node V− in the bipartite graph. The first column
of the bipartite graph are all possible source nodes, whereas the nodes in
the second column are all possible target nodes. Links in the bipartite graph
are determined by the directed links in the original network G. By using the
Hopcroft-Karp algorithm, a maximum set of matching links can be found
in the bipartite graph. None of the matching links share a common source
or target node. Then, the target nodes of matching links are matched nodes.
Other target nodes are unmatched nodes, which are also driver nodes.

network. The computational complexity of the Hopcroft-Karp
algorithm to find all driver nodes is O(

√
NL).

Links can be classified into three categories: critical, re-
dundant, and ordinary [3]. A link is critical if its removal
increases the number of driver nodes to remain in full control
of the system. A link is redundant if it never belongs to a
maximum matching. A link is ordinary if it is neither critical
nor redundant. In this paper, we want to derive analytical
expressions for the increase in the minimum number of driver
nodes, upon link removal. We will use the concept of critical
links to construct such approximations, both for random link
removals and targeted attacks.

III. NUMBER OF DRIVER NODES UNDER RANDOM ATTACKS

In this section, we assume that links are removed from
the network uniformly at random. We derive an analytical
approximation for the minimum number of driver nodes ND

for random attacks and show the performance of the approx-
imation for real-world and synthetic networks.

A. The fraction l of removed links is less than the fraction of
critical links lc

For a network with N nodes and L links, denote the
minimum number of driver nodes by ND0. The number of
critical links LC can be determined by applying the Hopcraft-
Karp algorithm L times, by considering all L networks that
are obtained by removing exactly one link from the original
network. If we denote the number of removed links by m,
then the fraction of removed links l = m

L , while the fraction
of critical links lc satisfies lc = Lc

L . We consider the case

l ≤ lc, i.e. m links are removed uniformly at random, under
the condition that the number of removed links m ≤ Lc. Now
assume that of these m links i links are critical (i ≤ m) and,
hence, m− i links are non-critical. We assume that the set of
critical links is nearly unchanged when the fraction of removed
links is small. Invoking the fact that after removing a critical
link, the minimum number of driver nodes ND increases by
one [3], thus, when i critical links are iteratively removed one
by one, the minimum number of driver nodes ND increases
by one in each iteration. For the m − i removed non-critical
links, the minimum number of driver nodes ND remains the
same. Since there are

(
Lc

i

)
possible ways to choose i critical

links from Lc critical links and there are
(
L−Lc

m−i

)
possible

ways to choose m − i non-critical links from L − Lc non-
critical links, the contribution to the increase in ND for each
i is i

(
Lc

i

)(
L−Lc

m−i

)
. The expectation of the increase N∗

D of the
minimum number of driver node ND after randomly removing
m links, is the sum of this expression for all i = 1, 2, . . . ,m
and divide it by

(
L
M

)
.

N∗
D =

∑m
i=1 i

(
Lc

i

)(
L−Lc

m−i

)(
L
m

) (3)

We first rewrite the numerator of the right hand site of Eq.
(3):

m∑
i=1

i

(
Lc

i

)(
L− Lc

m− i

)
=

m∑
i=1

Lc!

(i− 1)!(Lc − i)!

(
L− Lc

m− i

)
= Lc

m∑
i=1

(
Lc − 1

i− 1

)(
L− Lc

m− i

)

= Lc

m−1∑
i=0

(
Lc − 1

i

)(
L− Lc

m− i− 1

)
By using Vandermonde’s formula:

∑k
j=0

(
a
j

)(
b

k−j

)
=
(
a+b
k

)
,

we obtain Lc

∑m−1
i=0

(
Lc−1

i

)(
L−Lc

m−1−i

)
= Lc

(
L−1
m−1

)
. Finally,

dividing this expression by
(
L
m

)
, we obtain

N∗
D = lLc (4)

When the fraction of removed links is less than, or equal to
lc, we obtain

ND = ND0 + lLc (5)

For convenience, we normalize the minimum number of
driver nodes ND to the fraction of the minimum number of
driver nodes, i.e., ND

N and denote the obtained approximation
as nD,rand.

nD,rand =
ND0 + lLc

N
(6)

1) Validation for real-world networks: We evaluate the
performance of the approximation nD,rand in (6) for 8 real-
world networks. Table I presents the properties of the 8 real-
world networks: the number of nodes (N ), the number of links
(L), the initial minimum number of driver nodes (ND0) and
the number of critical links (Lc).



TABLE I
PROPERTIES OF THE 8 REAL-WORLD NETWORKS

Networks N L ND0 Lc

Amazon network [28] 105 441 25 29
Berlin traffic network [29] 224 523 14 123
IEEE118 power grid [30] 118 179 38 36

Illinois students network [30] 70 366 3 8
Hagy Chesapeake Bay ecosystem [31] 37 215 9 4

INSNA social network [32] 60 94 35 5
s838 [3] 512 819 119 179

TRN-Yeast-2 [3] 688 1079 565 23

Figure 2 shows the comparison between our approximation
Eq. (6) and simulation results in the considered real-world
networks. For each figure, the right-most point at the hori-
zontal axis denotes the fraction of critical links lc. We use
10000 realizations and obtain mean values for the fraction of
minimum number of driver nodes nD, together with the 95%−
confidence interval, for each fraction l. Visual inspection of
Figure 2 confirms that our approximation (6) is close to the
simulation results for the 8 real-world networks, when the
fraction of removed links l satisfies l ≤ lc.

To further quantify the accuracy of the approximation
nD,rand, Table II gives two performance indicators. K differ-
ent values of the fraction of removed links, i.e., c1, c2, ..., cK ,
are evenly determined in the interval [0, lc]. Let n∗D(ci) and
nD(ci) denote the mean simulated nd and the approximation
(6) at the fraction of removed links l = ci, respectively. The
performance indicator γ denotes the fraction of the interval
[0, lc] for which the absolute value of the relative error between
the approximation and the mean simulated value, does not
exceed 5%.

γ =

∑K
i=0 1

∣∣n∗
D

(ci)−nD(ci)

n∗
D

(ci)

∣∣≤5%

K

Finally, r denotes the absolute value of the relative error
between the approximation and the mean value obtained
through simulation, at l = lc. Table II shows for all real-world

TABLE II
PERFORMANCE INDICATORS FOR THE APPROXIMATION ND,rand FOR THE

8 REAL-WORLD NETWORKS; l ≤ lc
Networks γ r

Amazon 100% 0.11%
Berlin traffic 100% 4.82%

IEEE118 power grid 100% 2.31%
Illinois students 100% 0.35%

Hagy Chesapeake Bay 100% 0.07%
INSNA 100% 0.20%

s838 100% 4.80%
TRN-Yeast-2 100% 0.01%

networks that the approximation (6) for nD,rand performs very
well for l ≤ lc. For 5 out of the 8 considered networks, the
absolute value of the relative error at l = lc is less than 0.5%.

2) Synthetic networks : Next we test our approximation
Eq. (6) on two types of synthetic networks. When generating
the directed Erdős-Rényi random network Gp(N) with N
nodes, the probability that every node has an outbound link

to the other nodes is p. We generate the scale-free network
BA(N,M0,M) by using the Barabási-Albert (BA) model,
where N is the number of nodes, M is the number of
out-going links for each new node added to the current
network. We assume that initially the network consists of
a complete digraph on M0 nodes, where M0 equals M . In
the initial complete digraph, every pair of distinct nodes is
connected by a pair of unique links (one in each direction).
New nodes are added to the network one at a time. Each new
node is connected to M existing nodes with a probability that
is proportional to the number of links that the existing nodes
already have. Figure 3 shows that both for Erdős-Rényi and
Barabási-Albert (BA) networks, our analytic approximation
(6) for nD,rand fits well with simulation results, when the
fraction of removed links l is less than the fraction of critical
links lc. For the results depicted in Figure 3, Table III reports
the performance indicators γ and r introduced in the previous
subsection. Table III shows that also for the considered
synthetic networks, the approximation nD,rand performs very
well for l ≤ lc.

The overall conclusion of this subsection is that our
approximation nD,rand in Eq.(6) gives a very good estimation
for the minimum number of driver nodes, if the fraction of
randomly removed links l is smaller than, or equal to, the
fraction of critical links lc.

TABLE III
PERFORMANCE INDICATORS FOR THE APPROXIMATION nD,rand FOR THE

4 SYNTHETIC NETWORKS; l ≤ lc
Networks γ r

ER: G0.07(50) 100% 2.08%
ER: G0.04(100) 100% 1.80%

BA: N=200, E[D]=4 100% 0.29%
BA: N=500, E[D]=8 100% 0.09%

B. The fraction l of removed links is larger than the fraction
of critical links lc

Because in most cases lc is quite small, we also estimate
the normalized minimum number of driver nodes nD when
the fraction l of removed links is larger than the fraction lc
of critical links. Therefore, for l ≥ lc, we propose a simple
closed-form approximation for nD:

nD = al2 + bl + c (7)

where the parameters a, b and c will be determined by some
boundary conditions. For the first two boundary conditions
we assume that, for l = lc, Eq.(7) has the same value and
the same derivative as Eq. (6). This leads to the equations
ND0 + lcLc = N(al2c + blc + c) and Lc = N(2alc + b),
respectively. Finally, if we remove all links, i.e. l = 1, all
nodes need to be controlled. This gives the boundary condition
1 = a+ b+ c. Solving for a, b and c and combining with the
approximation Eq.(6), we obtain the following approximation
for nD for all values of l:

nD,rand =

{
ND0+lLc

N l ≤ lc
al2+bl+c

N l ≥ lc
(8)
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(e) Hagy Chesapeake Bay
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(h) TRN-Yeast-2
Fig. 2. Performance of the approximation (6) for the normalized minimum number of driver nodes nD as a function of the fraction of removed links l in
real-world networks under random attacks. The results for each fraction l is based on 10000 simulations.

 !"#$%
&'

 (

 %

!)

!*

!!

!(

!%

+
,

 %"#$%
&'!%'%(%$%%

-./0123+"34".563758"92+:;

90

" %<%=> %?

"@AA.3#26/123+

(a) ER network G0.07(50)

 !"# $
%!

 &

  

 $

'
(

&)"# $
%!&$ ) $)$

*+,-./0'"01"+230425"6/'78

6-

" $9$:; $$<

"=>>+0#/3,./0'

(b) ER network G0.04(100)
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(c) N=200, E[D]=4
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(d) N=500, E[D]=8
Fig. 3. The normalized minimum number of driver nodes nD as a function of
the fraction of removed links l in synthetic networks under random attacks.
In each sub-figure, we generate 100 corresponding synthetic networks and
calculate the average fraction of critical links lc and the average value of nD

for each fraction of removed links. For each network, the value of nD for
each fraction l is based on 10000 simulations.

with, a = N−ND0−Lc

N(lc−1)2
, b = LcN − 2alc, and

c = 1 − LcN + a(2lc − 1). Eq.(8) respresents a closed-form
approximation for nD, which only depends on N,L,ND0

and LC . The computational complexity of the approximation

is O(
√
NL2), which is needed for the computation of LC .

We compare the approximation (8) with simulation results
for the 8 real-world networks and two types of synthetic
networks. Figure 4 shows that for moderate values of the
fraction of removed links, the approximation exhibits a very
good fit for the real-world networks. This is quantified in
Table IV where we show two performance indicators: r which
denotes the relative error at l = 0.2 and l∗, which represents
the smallest value of l, where the relative error between the
approximation and the simulated mean exceeds 5%.

TABLE IV
PERFORMANCE INDICATORS FOR THE APPROXIMATION nD,rand FOR THE

8 REAL-WORLD NETWORKS

Networks r l∗

Amazon 3.12% 0.32
Berlin traffic 3.15% 0.24

IEEE118 power grid 2.31% 0.29
Illinois students 30.20% 0.12

Hagy Chesapeake Bay 5.22% 0.19
INSNA 1.50% 0.68

s838 4.15% 0.23
TRN-Yeast-2 0.39% 0.72

Figure 4 illustrates that the approximation both under- and
overestimates the value of nD. Table IV shows that the
approximation is the most accurate for the INSNA social
network and the TRN-Yeast-2 network, while the least accu-
rate for Illinois students network and Hagy Chesapeake Bay
ecosystem. According to Table IV, for 6 out of the 8 real-
world networks, for random link removals up to 20%, the
absolute value of the relative error of the approximation (8)



does not exceed 5%. For the worst performing network, Hagy
Chesapeake Bay, 12% of the links can be removed before the
absolute relative error exceeds 5%.

Finally, Figure 5 shows that the comparison for Erdős-
Rényi and Barabási-Albert networks, leads to the same
conclusions as above. The performance indicators r and l∗

for the 4 synthetic networks are given in Table V.

The overall conclusion of this subsection is that our ap-
proximation nD,rand in (8), in most cases, also gives a good
estimation for the minimum number of driver nodes, if the
fraction of randomly removed links l is larger than the fraction
of critical links lc, but still sufficiently small.

TABLE V
PERFORMANCE INDICATORS FOR THE APPROXIMATION (6) FOR THE 4

SYNTHETIC NETWORKS

Networks r l∗

ER: G0.07(50) 2.32% 0.47
ER: G0.04(100) 23.56% 0.08

BA: N=200, E[D]=4 1.47% 0.57
BA: N=500, E[D]=8 3.25% 0.28

IV. DRIVER NODES UNDER TARGETED ATTACKS

In this section, we quantify the impact of targeted link
attacks on the minimum number of driver nodes. We assume
that the attacker knows the critical links, which will be
attacked first. We consider two scenarios. In the first scenario,
the attacker removes critical links uniformly at random. We
call this a random critical link attack. For the second scenario,
we rank the critical links according to some network property.
Inspired by the degree-based attack methods adopted in [21],
we will rank the critical links in ascending order of their out-
in degree δi,j , which is defined as the sum of the out-degree
of its source node dout

i and the in-degree of its target node
din
j , i.e., δi,j = dout

i + din
j . We refer to the second case as a

targeted critical link attack. For both scenarios, we first remove
critical links in the original networks. After all critical links
are removed, the other links are removed uniformly at random.
Attacks based upon critical links removal were also suggested
by Mengiste et al. [23], however, only simulations results were
reported.

A. The fraction l of removed links is less than the fraction of
critical links lc

Again, we will derive an approximation for the minimum
number of driver nodes. We assume that, as long as the
number of removed links m ≤ Lc, the removal of each link
increases the minimum number of driver nodes ND by one.
Consequently, when the number of removed links is smaller
than Lc (the fraction of removed links l is smaller than lc),
the approximation for the minimum number of driver nodes
ND increases linearly with the fraction of removed links l.
When the number of removed links equals the number of
critical links Lc, the minimum number of driver nodes ND

equals ND0 +Lc. Thus, when the fraction l of removed links

is no more than the fraction lc of critical links, we obtain the
following approximation for nD:

nD,crit =
ND0 + lL

N
(9)

We evaluate the performance of (9) in our 8 real-world
networks. Figure 6 shows that the targeted critical link attack is
slightly more efficient than the random critical link in increas-
ing the minimum number of driver nodes. Considering the
small difference between the two scenarios, in the remainder
of the paper, we will only consider random critical link attack,
and simply refer to it as critical link attack. For all cases the
approximation (9) is a good fit for sufficiently small l, while
in some cases this holds for all l ≤ lc. We also observe that
the approximation (9) provides a worst-case estimate for the
number of needed driver nodes. Comparing with the critical
link attack, we quantify the performance of the approximation
(9) in Table VI. We use γ, the fraction of the interval [0, lc]
where the absolute value of the relative error does not exceed
5%, and the absolute value of the relative error r at l = lc, as
the performance indicators.

TABLE VI
PERFORMANCE INDICATORS FOR THE APPROXIMATION nD,crit FOR THE

8 REAL-WORLD NETWORKS; l ≤ lc
Networks γ r

Amazon 100% 0.68%
Berlin traffic 6.38% 79.60%

IEEE118 power grid 78.58% 7.25%
Illinois students 33.33% 22.22%

Hagy Chesapeake Bay 100% 0%
INSNA 100% 0%

s838 70% 9.88%
TRN-Yeast-2 100% 0.68%

While for 4 of the 8 considered real-world networks the
approximation (9) for nD,crit is very good, the approximation
is reasonable for two networks (IEEE118 power grid and
s838) and rather poor for the remaining two (Berlin traffic and
Illinois students). However, approximation (9) always seems
to overestimate the normalized minimum number of driver
nodes nD and, hence, approximation (9) can be considered a
worst-case approximation.

Next we evaluate the performance of (9) in synthetic net-
works. Figure 7 shows that our approximation Eq. (9) fits
well with the simulation results in the first few removal steps.
Qualitatively we observe the same behaviour as in Figure 6.

B. The fraction l of removed links is larger than the fraction
of critical links lc

We now construct an approximation when the number of
removed links is larger than Lc (the fraction of removed links
l is larger than lc), in a similar way as in the previous section.
Again assuming that for l ≥ lc it holds that nD is quadratic
in l, we obtain ND = dl2 + el + f . Boundary conditions are
now obtained from the assumptions that the parabola passes
through (1, 1) and (lc, ND0 + LCN) and has a zero derivative
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(h) TRN-Yeast-2
Fig. 4. The normalized minimum number of driver nodes nD as a function of the fraction of removed links l in real-world networks under random attacks.
In each plot, the dashed line shows the simulation results and the solid line shows our approximation. The simulation results for each fraction l is based on
10000 simulations.
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(a) ER network G0.07(50)
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(c) N=200, E[D]=4
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Fig. 5. The normalized minimum number of driver nodes nD as a function
of the fraction of removed links l in synthetic networks under random attacks.
The results for each fraction l is based on 10000 simulations.

at the latter point. This leads to the following approximation
for nD for all values of l:

nD,crit =

{
ND0+lL

N l ≤ lc
dl2+el+f

N l ≥ lc
(10)

with, d = N−ND0−lcL
N(lc−1)2

, e = −2dlc, and f = 1 + d(2lc − 1).
From Figure 8 and Figure 9, we can find the approximation

nD,crit fits well with simulation results when the fraction
of removed links is sufficiently small. When the fraction
of removed links is getting larger, the difference between
our approximation and simulation results is relatively large.
However, in all cases the approximation seems to serve as a
worst-case estimate for the number of required driver nodes.
This implies that approximation (10) can have value in risk
assessment studies.

V. COMPARISON OF nD UNDER DIFFERENT ATTACK
STRATEGIES

In this section, we compare the minimum number of driver
nodes for link removals under four attack strategies: (a)
critical link attack (targeted attack), (b) out-in degree-based
attack, (c) betweenness-based attack and (d) random attack.
In the out-in degree-based attack, we remove links one by
one in the ascending order of the out-in degree using the
recalculated out-in degree distribution at every removal step. In
the betweenness-based attack, we remove links one by one in
the descending order of the betweenness using the recalculated
betweenness distribution at every removal step.

Figure 10 and Figure 11 show that, for most values of
l, the out-in degree-based attack is the most harmful attack
strategy. In other words, the out-in degree-based attack strategy
is more efficient than other attack strategies in increasing the
minimum number of driver nodes ND, and, thus, degrading
the controllability of the networks. However, if the fraction of
removed links is small (l ≤ lc), the critical link attack is more
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Fig. 6. Performance of the approximation for the normalized minimum number of driver nodes nD as a function of the fraction of removed links l in
real-world networks under targeted attacks. The results for each fraction l is based on 10000 simulations.
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Fig. 7. Performance of the approximation for the normalized minimum
number of driver nodes nD as a function of the fraction of removed links l
in synthetic networks under targeted attacks.

effective than the out-in degree based attack. The most obvious
case where this happens is for the TRN-Yeast-2 network, see
Figure 10(h). When the fraction of removed links becomes
larger, the critical link attack becomes less effective than the
out-in degree-based attack. For large values of l, the targeted
attack approaches the random attack. The random attack is the
least effective attack strategy.

From results in Figure 10 and Figure 11, we can deduce that
the links with a small out-in degree have a strong tendency
to be critical links, whose removal increases the minimum
number of driver nodes ND more efficiently. The maximum
matching, which is used to determine ND, can explain this
phenomenon. As shown in Figure 1, link a and link d have a
small out-in degree which equals 2. The number of matching
links will decrease by 1 after removing either link a or link
d. Consequently, the number of unmatched (driver) nodes will
increase by one. Thus, link a and link d are critical links. Link
e has a larger out-in degree which equals 4. The number of
matching links is unchanged after removing link e. Link e is
not a critical link. As a result, the link with a larger out-in
degree is less likely to be a critical link since after removing
this link, other links which share the same source or target
node with this link, can also be alternative matching links.

VI. CONCLUSION

In this study, we derived analytical closed-form approxima-
tions for the minimum number of driver nodes ND needed
to control networks, as a function of the fraction of removed
links, both for random and targeted attacks. Our approxima-
tions rely on the notion of critical links. As targeted attack we
consider the case, where first critical links are removed. Both
for random and targeted attacks, our approximation is linear
in the fraction of removed links l, as long as this fraction
is smaller than the fraction of critical links. For fractions of
removed links larger than the fraction of critical links, our
approximation is quadratic in l. We validated our approxima-
tion through simulations on real-world and synthetic networks.
For random attacks, the approximation is always very good,
as long as the fraction of removed links is smaller than the
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Fig. 8. Performance of the approximation for the normalized minimum number of driver nodes nD as a function of the fraction of removed links l in
real-world networks under targeted attacks.
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Fig. 9. Performance of the approximation for the normalized minimum
number of driver nodes nD as a function of the fraction of removed links l
in synthetic networks under targeted attacks.

fraction of critical links. For some cases, the approximation
is still accurate for larger fractions of removed links. The
approximation for attacks targeting the critical links is also
accurate, as long as the fraction of removed links links is
sufficiently small. The approximation for the targeted attack
always serves as a worst-case estimate. Finally, we showed that
the critical link attack is the most effective among 4 considered

attacks, as long as the fraction of removed links is smaller than
the fraction of critical links.
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Fig. 10. Performance of different attack strategies in real-world networks
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