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Abstract. We introduce a Markov Modulated Process (MMP) to de-
scribe human mobility. We represent the mobility process as a time-
varying graph, where a link specifies a connection between two nodes
(humans) at any discrete time step. Each state of the Markov chain en-
codes a certain modification to the original graph. We show that our
MMP model successfully captures the main features of a random mobil-
ity simulator, in which nodes moves in a square region. We apply our
MMP model to human mobility, measured in a library.
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1 Introduction

Over the last century, scientists have modeled the spread of infectious diseases in
a population with various approaches and assumptions. Any epidemic outbreak
consists of two processes: the viral process describes the transmission of the virus
between two hosts and the mobility process specifies when two hosts are in con-
tact for a sufficiently long time at a sufficiently short distance to enable the viral
transmission. Since measurements of human mobility were seldom available in
earlier times, human mobility has largely been ignored or absorbed into the viral
process through time-varying infection and curing probabilities or by imposing
restrictions on the contact graph. Simple epidemic models, which do not take
mobility into account and consider fixed and static contact networks over time,
cannot explain the prolonged duration of an epidemic such as COVID-19 [21].

Recently, various approaches have been proposed to model human mobility
[1,5,13,14,16,17,23] and specific aspects such as community and motif formation
[15,26] and the movement behavior of each individual [7,18]. Mobile devices are
increasingly used to measure movement [8,9,10,17,27]. The impact of human
mobility on the spread of epidemics is studied in [2,11,12,19,24,27].

In this paper, we propose a novel approach to the modeling of Human Mobil-
ity Processes (HMP)1 based on a Markov Modulated Process (MMP) [6][22, Sec.

1 This paper is a abridgement of the master theses of B. Chang [4] and L. Yang [25].
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5.2]. Each state of the Markov chain in the MMP encodes an action, which cre-
ates a contact graph. For example, state i may generate an Erdős-Rényi graph
Gpi(N) with link density pi, state j may add j links and state k removes a
motif (e.g. a triangle) and so on. We evaluate the MMP performance first as-
suming that nodes move randomly around in a square region and are in contact
if their distance is smaller than a certain threshold. We then reconstruct the
time-varying contact network using a MMP model.

The paper is structured as follows: Section 2 describes a random mobility
simulator. Section 3 briefly introduces Markov Modulated Processes (MMPs)
and Section 3.2 compares our MMP model to the mobility simulator. We apply
our model to real-world data in Section 4. Finally, we conclude in Section 5.

2 Random mobility simulator

Movements over time are first simulated by a very simple random model, merely
to explain and evaluate the idea of a MMP in Section 3. Later, in Section 4,
human mobility is measured in a library.

We simulate2 a mobility process in which nodes are constrained to move
within a square region of size Z ×Z units. We consider N = n2 nodes. Initially,
the N nodes are spaced evenly at a distance of Z/(n+1) in a square lattice with
n rows and n columns. The distance between the edges of the lattice and the
border of the region is also Z/(n + 1). Figures 1a and 1b show a visualization
of the initial placement and a snapshot of a typical realization. The position of
each node is represented in Cartesian coordinates (x, y), with the bottom-left
corner of the square as origin (0, 0).

The positions of the nodes change at discrete time steps. At time k = 0, each
node is initialized with a random direction or angle, which is a random integer,
uniformly chosen in the range [0, 359]. For all remaining time steps, we fix a value
θ ∈ (0, 180) and each node can change its direction by an integer in the range
[−θ, θ] with uniform probability. Each node then moves forward in a straight
line along its current direction. The move distance is uniformly distributed in
the range [0, 2v]. We constrain the movement of the nodes to the square region
of size Z×Z. If a node attempts to move out of bounds, its x and y coordinates
are both clamped to the range [0, Z], bringing the node back into the region.
Then, the direction of the node is reset to point towards the center of the region,
i.e. the point (Z/2, Z/2). Finally, a random integer offset in the range [−φ, φ] is
applied to the new direction of the node.

At each discrete time step k ∈ {0, 1, . . . , T − 1}, every node moves according
to the procedure described above. After the nodes have moved, at k + 1, we
create a network based on the current positions of the nodes. Two nodes are
connected when the distance between them is d units or less; here d = 1.5. The
temporal contact network G(N, k) is represented by the time-varying N × N

2 The Python code of our mobility simulator is available on GitHub:
https://github.com/twente/mmp-mobility-model

https://github.com/twente/mmp-mobility-model
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(a) Initial setup of the mobility simulator. (b) Snapshot of one realization.

Fig. 1: Visualization of our random mobility simulator at time k = 0 and at
another time k > 0. If the grey circles around two nodes overlap, a link (shown
in orange) between the two is created. The grey circles have radius d/2 = 0.75.

adjacency matrix A(k) at discrete time k. Each element aij(k) = 1 if node i and
node j are in contact at time k; otherwise, aij(k) = 0.

In the mobility process simulations, we choose N = 25 nodes, Z = 10 for
the size of the region and, further, θ = 20, v = 1, φ = 30. We perform 1000
realizations of the mobility process and each realization of the simulated mobility
process runs for T = 1000 time steps and generates A(1), A(2), . . . , A(1000)
adjacency matrices of contact graphs, starting from an empty initial adjacency
matrix A(0) = O at time k = 0, representing the evenly-spaced square lattice3.
Figure 2 illustrates the number of links at each time step for one realization of
the mobility process. After performing 1000 realizations of 1000 time steps each
in the mobility simulations, Figure 3 plots the distribution of the number of
links in the graph at each time step and the number of links added or removed
between two time steps.

3 The Markov Modulated Process (MMP)

We consider a temporal graph G(N, k), where the links in the graph change
over time, controlled by a discrete-time Markov process. In each state of the
Markov chain, an action is executed to modulate the graph. The evolution of
the Markov process is controlled by the M ×M probability transition matrix P ,
whose elements pij represent the probability of transitioning from state i to state
j. The goal is to use a discrete-time Markov process to modulate a time-varying

3 The spacing in the lattice is 10/6 ≈ 1.667 which exceeds d = 1.5; therefore, there
are no links in the initial graph at k = 0.
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Fig. 2: Number of links at each time step for one realization of the mobility
process with N = 25 nodes.
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(a) Total number of links.
Average: 19.430.
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(b) Number of added links.
Average: 10.369.
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(c) Number of removed
links. Average: 10.350.

Fig. 3: Histograms of link statistics for the simulated mobility process with 25
nodes across 1000 realizations of 1000 time steps.
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(a) Total number of links.
Average: 19.433.
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(b) Number of added links.
Average: 10.369.
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(c) Number of removed
links. Average: 10.350.

Fig. 4: Histograms of link statistics for the reduced MMP model with 25 nodes
across 1000 realizations of 1000 time steps.

graph of 25 nodes, such that the series of MMP generated adjacency matrices
has properties which closely resemble those of the series of adjacency matrices
produced by the mobility process.
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3.1 A first approach: the combinatorial MMP model

Between two consecutive time steps of the mobility process, links in the contact
graph are both added and removed. In order for the average number of links over
time in the MMP model to match the mobility process, a feedback mechanism is
needed to control the number of links. Without feedback, the MMP model does
not track the number of links, which will consequently drift like a random walk
over time [25, Sec. 3.5]. Therefore, the states of the MMP model should encode
the number of links in the graph at each discrete time step.

In the first approach, each state of the Markov process represents the number
of links in the graph as well as a modulating action f which will be applied to the
temporal graph. The action f = (+a,−b) consists of randomly adding a links
and removing b. The set of possible actions is bounded by the number of links
which currently exist in the graph, because we cannot remove more links than
currently exist nor add more links than can be accommodated by the complete
graph. Given that i links currently exist in the graph, the complete action set
Ji is the set of all possible actions, given by

Ji := {f = (+a,−b)|0 ≤ a ≤ Lmax − i, 0 ≤ b ≤ i}, (1)

where Lmax =
(
N
2

)
= N(N − 1)/2 is the number of links in the complete graph

with N nodes. Given i links in the graph, there are thus (i + 1)(Lmax − i + 1)
possible actions, each of which will be encoded by a state in the MMP model.
As an example, consider N = 3 nodes. Since Lmax = 3, the complete action sets
for each possible number of links is:

J0 = {(+0,−0), (+1,−0), (+2,−0), (+3,−0)},
J1 = {(+0,−0), (+0,−1), (+1,−0), (+1,−1), (+2,−0), (+2,−1)},
J2 = {(+0,−0), (+0,−1), (+0,−2), (+1,−0), (+1,−1), (+1,−2)},
J3 = {(+0,−0), (+0,−1), (+0,−2), (+0,−3)}.

For each of the complete action sets, every action is assigned to a unique state.
Hence, the same action can appear multiple times, but for a different number of
links. The Markov states, numbered arbitrarily in format Sn : {L, f}, where L
is the number of links currently in the graph, for the example of N = 3 are:

S1 : {0, (+0,−0)} S2 : {0, (+1,−0)} S3 : {0, (+2,−0)} S4 : {0, (+3,−0)}
S5 : {1, (+0,−0)} S6 : {1, (+0,−1)} S7 : {1, (+1,−0)} S8 : {1, (+1,−1)}
S9 : {1, (+2,−0)} S10 : {1, (+1,−2)} S11 : {2, (+0,−0)} S12 : {2, (+0,−1)}
S13 : {2, (+0,−2)} S14 : {2, (+1,−0)} S15 : {2, (+1,−1)} S16 : {2, (+1,−2)}
S17 : {3, (+0,−0)} S18 : {3, (+0,−1)} S19 : {3, (+0,−2)} S20 : {3, (+0,−3)}

With the states of the MMP model now defined, the next step is to construct
the probability transition matrix P from the mobility process. At each time step
k < T of the mobility process, the number of links in the adjacency matrix
A(k+1) is compared with A(k) to determine how many links to add and remove
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(i.e. the action). The number of links and the action allow us to determine the
Markov state at time k. The transition probability,

pij =
nij∑

m∈Xnim
, (2)

equals the number nij of observed transitions from state i to state j divided
by the total number of observed transitions from state i to any other state m,
where X is the set of all states.

Because each state Sn : {L, f} of the combinatorial MMP model encodes both
the number of links in the graph as well as an action, the total numberM of states
is found by summing the number of possible actions over all possible numbers
of links which can exist in the graph, M =

∑Lmax

i=0 (i+ 1)(Lmax − i+ 1) which is
M = O(N6) as shown in [25, Sec. 4.2]. As the size N of the graph increases, the
computational complexity of the combinatorial MMP model quickly explodes
and becomes infeasible.

3.2 Reduced MMP model for human mobility

The computational intractability has led us to simplify the combinatorial MMP
model in Section 3.1 to a reduced MMP model, in which each state {0, 1, . . . , Lmax}
represents the number of links in the graph and not a specific action. The num-
ber of states required is therefore M = Lmax + 1 = O(N2), since one additional
state is required for the null graph with 0 links. A Markov state is assigned to
each time step k ≤ T of the mobility process and the state corresponds to the
number of links in the adjacency matrix A(k). The transition probabilities of
the probability transition matrix P are then calculated by (2).

The actions of the reduced MMP model are no longer embedded in the states,
and instead we define a transition action set Jij for each state transition from
state i to j. Each transition action set Jij will be a subset of the corresponding
complete action set Ji that was described in (1). The transition action set Jij
is defined as the set of possible actions, given that i links currently exist in the
graph, that will result in j links after the action is applied, and expressed as

Jij :={f = (+a,−b)|j − i = a− b, 0 ≤ a ≤ Lmax − i, 0 ≤ b ≤ i}
={f ∈ Ji|j − i = a− b}.

(3)

Revisiting the example of N = 3 nodes, the transition action sets are given by:

J00 : {(+0,−0)} J01 : {(+1,−0)} J02 : {(+2,−0)} J03 : {(+3,−0)}
J10 : {(+0,−1)} J11 : {(+0,−0), (+1,−1)} J12 : {(+1,−0), (+2,−1)} J13 : {(+2,−0)}
J20 : {(+0,−2)} J21 : {(+0,−1), (+1,−2)} J22 : {(+0,−0), (+1,−1)} J23 : {(+1,−0)}
J30 : {(+0,−3)} J31 : {(+0,−2)} J32 : {(+0,−1)} J33 : {(+0,−0)}

When we transition from state i to state j in the reduced MMP model, we select
an action f from the corresponding transition action set Jij with probability

Pr[Jij(f)] =
n(f)ij
nij

, where n(f)ij is the number of times action f is observed
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during transitions from i links to j links in the mobility process and nij is the
total number of observed transitions from i to j links.

The probability distribution of the transition action set is independent of the
transition probabilities of the Markov process. The probability of an action f ∈
Jij , given that there are currently i links in the graph, is given by pij Pr[Jij(f)],
which is the probability of transitioning from i to j links multiplied by the
probability of choosing action f from Jij . The probability of each action is only
dependent on the current number of links in the graph: by the Markov property,
the next state depends only on the current state (i.e. the current number of
links) and the probability distribution of each action set is fixed.

The reduced MMP model can be directly derived from the combinatorial
MMP model as shown in [25, Sec. 4.3]. Both MMP models will produce [25] a
modulated graph with the same number of links on average and the long-term
rate at which each action is applied is the same for both models. The dependence
between consecutive actions is lost in the reduced MMP model: the combinatorial
MMP model embeds the actions in the Markov states, and hence the probability
of the next action has a dependence on the previous action. In the reduced MMP
model, the next action is dependent only on the current number of links. If, in
the mobility process being modeled, there is a negligible amount of dependence
between consecutive actions, then the combinatorial MMP model is actually
trying to model a dependence that does not exist. Therefore, no information
is lost in the reduced MMP model, as is the case in our simulated mobility
process [25, Sec. 5.5]. The reduced MMP model in Figure 4 is extremely close
to simulated mobility in Figure 3.

In Figure 5, we plot for the two processes theK-step link retention probability,
which is the probability [20, p. 182] that a link still exists at time k+K, given that
the link existed at the time k. For the MMP models, the link retention probability
decreases exponentially [20, p. 182] in K. Figure 4 indicates that the probability
that a link is not removed is approximately 1 − (10.350/19.433) ≈ 0.47. Since
the removed links are chosen randomly, we expect an exponential decay of the
K-step retention probability. Compared to the mobility process, however, the
link retention probability of the MMP models is lower for larger steps. Although
Figures 3 and 4 are almost indistinguishable, the link retention probabilities of
the MMP model and the mobility process start to deviate after 3 time steps.
This prompts further research of the algorithm which selects the links to be
added and removed at each time step.

4 Real-world application of MMP to HMP in a library

The mobility data was recorded in the TU Delft library during a single day from
08:00 to 18:00. In the tracking experiment, each of the 37 participants wears
a Bluetooth tracking device and there are fixed Bluetooth beacons inside the
library. Each Bluetooth tracking device will record contact events with beacons,
and each data record includes the time and duration of the contact, the distance
from the beacon and information to uniquely identify the device and beacon.
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Fig. 5: Comparison of the K-step link retention probability between the mobility
process and the reduced MMP model. The two curves remain really close up to
step 3, whereafter they start to diverge.

4.1 Building the reduced MMP Model

The tracking devices record the contacts between people every 30 seconds. The
opening time of the library at 08:00 is set at k = 0 and the closing time at 18:00
at time k = 1200. The adjacency matrix A(k) represents the contact graph at
discrete time k ∈ [0, 1200].

We plot the number of links at each time step in Figure 6. We observe that
there are almost no contacts, except for the two spikes in the number of contacts,
from 11:04 to 12:54 and from 15:10 to 16:20.

Since our MMP model is based on the number of links in the graph, we focus
on modeling the first spike in contacts from 11:04 to 12:54, corresponding to
time step k = 369 to k = 587; this time window is highlighted by a yellow stripe
in Figure 6. We compute the total number of links at each time step (average
is 2.84) and the number of links added (average is 0.11) and removed (average
is 0.11) between two time steps. We use the adjacency matrices to generate the
probability transition matrix and build the action sets. The mobility process
runs for a little over 200 time steps, so we choose to simulate the MMP model
for 200 time steps; the number of realizations is kept at 1000 as previously.

4.2 Results of the reduced MMP Model

The maximum number of links in a graph of 37 nodes is
(
37
2

)
= 666 and the

reduced MMP model needs M = 667 states. However, Figure 6 shows that a
maximum of 9 links was observed. For M = 10 states, there are 100 possible
state combinations, but we only observed 27 transitions; so we consider 27 action
sets.

In each realization, the Markov process is initialized in state 0 with an empty
graph. After performing 1000 simulations of 200 time steps, we calculate the total
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Fig. 6: Number of links at each time step for the mobility process in the library
(blue circles) and for a realization of our reduced MMP model (orange crosses).
The time steps of our chosen window have been re-indexed to start from 0. Inset:
entire data from the recorded day, the yellow strip represents the time window
which is modeled by the MMP model.

number of links at each time step (average 2.607) and the number of links added
(average 0.120) and removed (average 0.106) between two time steps. In the
MMP model, the average number of links observed at each time step is about
8.3% lower compared to the library mobility process. The average number of links
added is about 8.9% higher, and the average number of removed links is about
3.7% lower. The error of the MMP model for the library data is relatively large
compared to the random mobility simulator. We attribute this large difference
to the fact that the number of links in the graph is small and that the model is
run for fewer time steps.

One immediate observation is that the real mobility process in Figure 6
exhibits a pronounced increase in the number of links followed by a decrease,
but this trend is not captured by the MMP model. Figure 6 reveals that the
modulated graph reaches 9 links at t = 87 and remains there until t = 97. At
t = 98, the MMP then transitions to 8 links and remains there for until t = 130.
To better understand this behavior, we investigate the probability transition
matrix of the MMP model in Figure 7.

Row i of the transition matrix P in Figure 7 corresponds to state i, which
encodes i links in the graph. Hence, the entry (i, j) indicates the probability
of having j links in the graph after the next action. The 9th row in Figure
7 indicates an 83% probability of staying at 9 links and a 17% probability of
transitioning to 8 links. This probability is derived by observing the number of
links in the mobility process in Figure 6. From time k = 97 to k = 102, the
graph has 9 links. This means that we observe 5 transitions from 9 links to 9
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0 1 2 3 4 5 6 7 8 9

0 0.57 0.14 0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1 0.04 0.90 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00

2 0.00 0.16 0.77 0.03 0.03 0.00 0.00 0.00 0.00 0.00

3 0.00 0.00 0.02 0.96 0.02 0.00 0.00 0.00 0.00 0.00

4 0.00 0.05 0.05 0.00 0.80 0.05 0.00 0.05 0.00 0.00

5 0.00 0.00 0.00 0.00 0.09 0.91 0.00 0.00 0.00 0.00

6 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

8 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.91 0.00

9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.83

Fig. 7: Probability transition matrix P of the MMP model based on the real
mobility process.

links. At k = 103, the graph transitions to 8 links and for the remainder of the
mobility process, we never observe 9 links in the graph again. We observed no
transition from 9 links to a number of links different from 8 and 9. Therefore, the
probabilities in the probability transition matrix are 1/6 ≈ 0.17 and 5/6 ≈ 0.83,
respectively.

Due to the limited amount of data, the MMP model is sensitive to the id-
iosyncrasies of this particular dataset and the model overfits the data. Consider
how state 9 can be reached: from the probability transition matrix, we observe
that the only way to reach state 9 is from state 7 and the corresponding tran-
sition probability is 1. The original mobility process, in contrast, is interpreted
as follows: the only way for 9 contacts between people occurs if there were 7
contacts between them 30 seconds ago (one time step). Furthermore, if there are
currently 7 contacts between people, there is a 100% probability that after 30
seconds, there will be 9 contacts. The MMP model only incorporates transitions
that have been observed in the mobility process. Unobserved transitions in the
real mobility process have zero probability in the MMP model.

5 Conclusions and outlook

We present the idea of a Markov Modulated Process (MMP) for constructing
temporal contact networks for human mobility. The states of our reduced MMP
model encode the number of links in the graph. We illustrate the accuracy of the
MMP model for both a random mobility simulator and for real-world movements
in a library. Surely, our implementation of a MMP can be improved.

A first concern is the overfitting of the current MMP model. Only observed
transitions in the mobility process may occur in the MMP model. Any other
transition is impossible, even though such transition may be possible in reality.
The MMP model can be improved by data augmentation of the mobility process,
especially regarding rare events [3].

Another challenge is to encode spatial correlations in the MMP model. The
number of added and removed links in the graph is based on the MMP model,
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but which link should be removed is currently random. Thus, spatial correlation
between the nodes is ignored in the current implementation and we propose to
adjust the reduced MMP model to incorporate the spatial correlations.

A third drawback of the reduced MMP model is that we implicitly assume
that the number of links in the network is roughly constant. Practical situations
for modeling population flow, such as airports, schools, libraries and other trans-
fer locations, typically show activity spikes around certain events, such as lunch
time. The reduced MMP formulation performs well in situations where activity
stays roughly constant, such as long-term interactions of individuals with friends
and family, but does not capture activity spikes.

We believe that Markov Modulated Processes constitute a powerful frame-
work for modeling human mobility and may ultimately ameliorate the models
for investigating the spread of infectious diseases.

Acknowledgements: The authors thank Dr. ir. Sascha Hoogendoorn-Lanser
for sharing the library data, which has been collected as part of an ongoing
project led by her at TU Delft.
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